
Continuous Time Stochastic
Modeling in R

User’s Guide and Reference Manual

CTSM-R Development Team

CTSM-R Version 1.0.0

June 21, 2018

i

CTSM-R Development Team. 2015. CTSM-R: User’s Guide and
Reference Manual. Version 1.0.0

Copyright c© 2011–2015, CTSM-R Development Team.

This document is distributed under the Creative Commons At-
tribute 4.0 Unported License (CC BY 4.0). For full details, see

https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

How to contribute

The CTSM-R reference manual and source code of CTSM-R are controlled
using Git hosted at DTU Compute. The repositories are currently managed by
Rune Juhl (ruju@dtu.dk).

Reference manual

To obtain the LATEX files first clone the Git repository

git clone ruju@git.compute.dtu.dk:ctsmr-reference

Changes must always first be committed locally before pushing to or pulling
from the server. Changes are committed using

git commit -a -m "[insert descriptive message here]"

New files have to be tracked by

git add [file(s)]

Files can also be deleted using

git rm [file(s)]

To ensure no untracked files or additional changes exist use

git status

If all changes have been committed then go ahead and update your local
repository by pulling down possible changes from the remote server

git pull

Any conflicts have to be handled manually before pushing your local changes
to the remote server

git push

CTSM-R code

iii

ruju@dtu.dk

Contents

How to contribute iii

Contents iv

I Introduction 1

1 Why CTSM-R 2

2 Getting started 3

II Using CTSM-R 5

3 Model object 6

4 Data 9

5 Settings 10

6 Result object 12

7 Functions 15

8 Example 18

9 Advanced usage 22

III Mathematical Details 23

10 Maximum likelihood estimation 24

11 Kalman Filters 26

12 Maximum a posteriori estimation 33

13 Using multiple independent data sets 35

14 Missing observations 37

iv

15 Robust Estimation 39

16 Various statistics 40

17 Computational issues 44

Bibliography 53

Index 54

v

Part I

Introduction

1

1 Why CTSM-R

CTSM-R is an R package providing a framework for identifying and estimating
stochastic grey-box models. A grey-box model consists of a set of stochastic
differential equations coupled with a set of discrete time observation equations,
which describe the dynamics of a physical system and how it is observed. The
grey-box models can include both system and measurement noise, and both
nonlinear and nonstationary systems can be modelled using CTSM-R.

1.1 Model Structure

The general model structure used in CTSM-R is state space model

dxt = f (xt, ut, t, θ) dt + σ (ut, t, θ) dωt , (1.1)
yk = h (xk, uk, tk, θ) + ek , (1.2)

where 1.1 is a continuous time stochastic differential equation which is the
physical description of a system. (1.2) is the discrete time observation of the
underlying physical system.

CTSM-R is built to automatically handle linear and non-linear models.

1.2 Likelihood

CTSM-R is built using likelihood theory. The likelihood is a probabilistic
measure of how likely a set of parameters are given data and a model. The
likelihood of a time series is the joint probability density function (pdf)

L(θ,YN) = p (YN |θ) , (1.3)

where the likelihood L is the probability density function given θ and a time
series YN of N observations. By alternating the parameters the likelihood func-
tion changes and the goal is to find those parameter values which maximizes
the likelihood function.

CTSM-R computes the likelihood function (or an approximation when
required) and uses an optimization method to locate the most probable param-
eters.

2

2 Getting started

2.1 Prerequisites

To run CTSM-R and start estimating parameters you must first install a few
required tools.

R

CTSM-R requires R version 2.15 or newer to work. The latest version of R is
available for download at http://www.r-project.org.

Linux users may have a version of R available in the local package manager.
Note this may not be the most recent version of R. CRAN offers binaries for
the popular distributions e.g. Ubuntu.

Several interfaces to R are available. A popular choice is RStudio http:
//www.rstudio.com/.

Toolchains

CTSM-R requires a suitable C and Fortran compiler.

Windows

Windows users must install Rtools which provides the required toolchain.
Rtools is available from http://cran.r-project.org/bin/windows/Rtools/.

Download and install a version of Rtools which is compatible with your version
of R.

Rtools can be installed without modifying any of the settings during the
installation. It is not required to add the Rtools installation path to the PATH
environment variable.

Linux

Linux users should use their distribution’s package manager to install gcc and
gfortran compilers. Ubuntu users can simply install the development version
of R: sudo apt-get install r-base-dev. The required compilers will then be
installed.

2.2 How to install CTSM-R

To install CTSM-R first open R. Run the following line of code in R.

3

http://www.r-project.org
http://www.rstudio.com/
http://www.rstudio.com/
http://cran.r-project.org/bin/windows/Rtools/

install.packages("ctsmr", repo = "http://ctsm.info/repo/dev")

If you installed CTSM-R before installing the toolchain you may have to
restart R.

2.3 How to use CTSM-R

To use the CTSM-R package it must be loaded

library(ctsmr)

4

Part II

Using CTSM-R

5

3 Model object

A CTSM-R model structure follows an object oriented style. The model is build
by adding the mathematical equations one by one.

3.1 Initialization

Every model must first be initialized. An empty model object is created and
the mathematical equations are subsequently added to the object.

model <- ctsm()

ctsm() is a generator function which defines the reference class ctsm. The
retuned object is an instance of the class ctsm which has a set of methods at-
tached to it. The methods are used to define the model structure and parameter
boundaries.

3.2 System equations

The continuous time stochastic differential equations are added to model by
calling

model$addSystem(formula)

formula is the SDE written as a valid R formula, e.g.

dX ˜ f(X,U,t) * dt + g(U,t) * dwX

Valid formulaes are described in 3.5

3.3 Measurement equations

The discrete time measurement equation is added to model by

model$addObs(formula)

formula is the measurement equation like

y ˜ h(X,U,t)

Valid formulaes are described in 3.5. The variance of the measurement noise is
added for the output with the function

model$setVariance(Y1 ˜ ...)

6

3.4 Inputs

Defining the names of the inputs is carried out with the function

model$addInput(symbol)

symbol specifies the which variables in the system and measurement equations
are external inputs. Example: model$addInput(U1,U2) adds the inputs U1 and
u2, which must be columns in the data.

3.5 Rules for model equations

The following rules apply when defining model equations:

• Characters accepted by the interpreter are letters A-Z and a-z, integers
0-9, operators +, -, *, /, ˆ, parentheses (and) and decimal separator ..

• The interpreter is case sensitive with respect to the symbolic names of
inputs, outputs, states, algebraic equations and parameters, but not with
respect to common mathematical functions. This means that the names
’k1’ and ’K1’ are different, whereas the names ’exp()’ and ’EXP()’ are the
same. The single character ’t’ is treated as the time variable, whereas the
single character ’T’ is treated as any other single character.

• The number formats accepted by the interpreter are the following: Scien-
tific (i.e. 1.2E+1), standard (i.e. 12.0) and integer (i.e. 12).

• Each factor, i.e. each collection of latin letters and integers separated by
operators or parentheses, which is not a number or a common mathemat-
ical function, is checked to see if it corresponds to the symbolic name of
any of the inputs, outputs, states or algebraic equations or to the time
variable. If not, the factor is regarded as a parameter.

• The common mathematical functions recognized by the interpreter are
the following: abs(), sign(), sqrt(), exp(), log(), sin(), cos(), tan(), arcsin(),
arctan(), sinh() and cosh().

Defining initial values of states and parameters

The parameter estimation is carried out by CTSM-R by maximizing the likeli-
hood function with an optimization scheme. The scheme requires initial values
for the states and parameters, together with lower and upper bounds. The
initial values can be set with the function

model$setParameter(a = c(init=10, lower=1, upper=100))

which sets the initial value and bounds for the parameter a. For setting the
initial value of a state the same function is used, for example

model$setParameter(X1 = c(init=1E2, lower=10, upper=1E3))

sets the intial value of X1.
In order to fix the value of a parameter to a constant value the function is

called without the bounds, for example

7

model$setParameter(a = c(init=10))

and to estimate the parameter with the maximum a posteriori method, the
prior standard deviation is set with

model$setParameter(a = c(init=10, lower = 1, upper = 100, psd = 2))

8

4 Data

Data is required to estimate the parameters in a model. The continuous time
formulation allows the data to be sampled irregularly.

4.1 Individual dataset

The data required for estimating the CTSM-R model must be given in a
data.frame where the variables are named exactly the same as in the model.
CTSM-R looks for the output variables and specified inputs in the data.frame.

data <- data.frame(X1 = c(1,2,3), X2 = , X3 = , y1 = ,)

All inputs must be observed at all time points, but missing observations are
allowed. Missing or partly missing observations should be marked with NA in
the data.frame.

4.2 Multiple independent datasets

Multiple independent datasets is a set of individual datasets collected in a list.
The collection of datasets can be of different length.

bigdata <- list(data1, data2, data3)

9

5 Settings

The mathematical methods within CTSM-R can be tuned through a number of
settings. The settings are found in the list $options in the ctsm object.

model$options$[element]

where [element] is any of the following options.
Filter settings which holds the controls for the (iterated extended) Kalman

filter part of CTSM-R (see [8] for details).

initialVarianceScaling numeric, positive Default: 1.0

For all models the Scaling factor for initial covariance can be set. It is used
in the calculation of the covariance of the initial states. The larger the
scaling factor, the more uncertain the initial states.

numberOfSubsamples integer, positive Default: 10

For linear time varying (LTV) models, the Number of subsamples in Kalman
filter is displayed in addition to the above scaling factor. This is the
number of subsamples used in the subsampling approximation to the
true solution of the propagation equations in the Kalman filter. The more
subsamples, the more accurate the approximation.

5.1 Non-linear models

odeeps numeric, positive Default: 1.0× 10−12

In the lower panel the Tolerance for numerical ODE solution (default: 1.0E-
12) is the tolerance used by the ODE solvers in the iterated extended
Kalman filter. The lower the tolerance, the more accurate the ODE solution.

nIEKF integer, positive Default: 10

The maximum number of iterations in the iterated extended Kalman
filter.

iEKFeps numeric, positive Default: 1.0× 10−12

The tolerance for the iterated extended Kalman filter. The measurement
equation is iterated until the tolerance is met or until the maximum
number of iterations is reached.

10

5.2 Optimization

Optimization settings holds the basic controls for the optimization part of
CTSM-R (see the Mathematics Guide for details).

maxNumberOfEval integer, positive Default: 500

The maximum number of objective function evaluations.

eps numeric, positive Default: 1.0× 10−14

The relative convergence tolerance (stopping criteria).

eta numeric, positive Default: 1.0× 10−6

The adjustment factor for initial step length in the line search.

5.3 Advanced options

There is usually no need to adjust any of these values.

hubersPsiLimit numeric, positive Default: 3.0

The cut-off value for Huber’s psi-function is the constant c in Huber’s
ψ-function.

padeApproximationOrder integer, positive Default: 6

The Padé approximation order used to compute matrix exponentials.

svdEps numeric, positive Default: 1.0× 10−12

The tolerance for the singular value decomposition used to determine if
the \A matrix is singular or not.

lambda numeric, positive Default: 1.0× 10−4

The Lagrange multiplier in the penalty function.

smallestAbsValueForNormalizing numeric, positive Default: NaN

The minimum absolute value used for normalizing in penalty function.

11

6 Result object

The object returned from $estimate is an S3 ctsmr object. That is a list which
contains various elements such as the estimated coefficients ($xm). All parts
of the list can be referenced using the $ operator followed by the name of the
element.

All elements and their data types are listed below.

itr integer, positive

The interations to convergence.

neval integer, positive

The number of function evaluations.

detH numeric

Determinant of the Hessian of the objective function.

f numeric

The objective function at convergence.

fpen numeric

The value of the penalty function at convergence.

fprior numeric

loglik numeric

The logarithm of the likelihood function.

dL

dpen numeric vector

Derivative of the penality function wrt. the parameters.

corr numeric matrix

The correlation matrix of the parameter estimates.

pt numeric vector

12

sd numeric vector

The standard deviance of the parameter estimates.

t numeric vector

The t-test statistics.

xm named numeric vector

The parameter estimates.

xmin named numeric vector

The lower box boundary of the paramters for the optimization.

xmax named numeric vector

The upper box boundary of the paramters for the optimization.

estimated

trace numeric matrix

Trace of parameters and derivatives during the optimization.

threads integer, positive

The number of threads used while calculating the gradients.

cpus integer, positive

The number of available CPU’s (cores).

info integer, positive

An information code.

message character string

Description of the information code.

model ctsmr

The CTSM-R model object.

data data.frame

The data used for the parameter estimation.

6.1 Information codes

A code is always returned from CTSM-R during mathematical operations such
as estimation or prediction. Table 6.1 lists the posible codes.

13

0 Converged.
-1 Terminated.
2 The maximum number of objective function evaluations has been exceeded.
5 The prior covariance matrix is not positive definite.

10 The amount of data available is insufficient to perform the estimation.
20 The maximum objective function value (1× 10300) has been exceeded.
30 The state covariance matrix is not positive definite.
40 The measurement noise covariance matrix is not positive definite.
50 Unable to calculate matrix exponential.
60 Unable to determine reciprocal condition number.
70 Unable to compute singular value decomposition.
80 Unable to solve system of linear equations.
90 Unable to perform numerical ODE solution.

Table 6.1: Return codes from CTSM-R

14

7 Functions

7.1 Summary of estimated parameters

The function

summary(fit,extended=TRUE)

takes the fit returned by model$estimate(). It displays a matrix of the es-
timated parameters with their estimated uncertainty together with some op-
timization variables and correlation matrix of the parameter estimates. The
displayed results for each parameter are:

Estimate The estimated parameter value.

Std. Error The uncertainty of the parameter estimate.

t value Skal vi ikke fjerne den fra resultatet??

Pr(>|t|) The fraction of probability of the corresponding t-distribution
outside the limits set by the t value. Loosely speaking, the
p(>|t|) value is the probability that the particular initial state or
parameter is insignificant, i.e. equal to 0. If this value is not low
(normally it should be below 0.05) this can indicate the model
is over-parametrized.

dF/dPar Derivative of the objective function with respect to the partic-
ular initial state or parameter. If the value is not close to zero,
the solution found may not be the true optimum, and you
should consider changing some settings for the optimization
and repeating the computation.

dPen/dPar Derivative of the penalty function with respect to the particular
initial state or parameter. If the value is significant compared to the
dF/dPar value, the particular initial state or parameter may be
close to one of its limits, and you should consider to loosen this
limit

More If MAP estimation was used...

7.2 Prediction

k-step predictions are computed using the predict function.

15

predict(fit, n.ahead, covariance, newdata, firstorderinputinterpolation, x0, vx0)

fit is a ctsmr object returned from the $estimate.
n.ahead is an non-negative integer (default: n.ahead = 1L).
covariance determines if the full covariance matrix is returned. Default is
FALSE.
newdata is a data.frame with data as described in
firstorderinputinterpolation if FALSE (default) the inputs are constant between
samples. If TRUE linear interpolation is used.
x0 is a numeric vector with initial values to override those in the fit.
vx0 specifies the initial covariance matrix of the states.

7.3 Simulation of mean

Deterministic simulations are computed using the simulate function.

simulate(fit, newdata)

fit is a ctsmr object returned from the $estimate.
newdata is a data.frame with data as described in

7.4 Simulation (stochastic)

Stochastic realizations of the SDE can be generated. For linear models the
densities are known and can be sampled correctly. This is not implemented
directly.

For non-linear models stochastic realizations rely on discretization schemes.
Realizations are generated using an Euler scheme using

stochastic.simulate(fit, x0, data, dt)

fit is a ctsmr object returned from the $estimate.
x0 is a numeric vector with initial values of the states.
data is a data.frame with possible inputs.
dt is the discretization step.

7.5 Filtration

Filtration are computed using the filter.ctsmr function.

filter.ctsmr(fit, newdata)

fit is a ctsmr object returned from the $estimate.
newdata is a data.frame with data as described in

16

7.6 Smoothing

Smoothed states are computed using the smooth.ctsmr function.

smooth(fit, newdata)

fit is a ctsmr object returned from the $estimate.
newdata is a data.frame with data as described in

17

8 Example

As an example to illustrate the methods we will use a small simulation example
(see Figure ??). A linear 3 compartment model [10] similar to the real data
modeling example presented in Section ?? is used. We can think of the response
(y) as insulin concentration in the blood of a patient, and the input (u) as meals.

The data is simulated according to the model

dxt =

ut
0
0

+

−ka 0 0
ka −ka 0
0 ka −ke

 xt

 dt +

σ1 0 0
0 σ2 0
0 0 σ3

 dωt (8.1)

yk =
[
0 0 1

]
xtk + ek , (8.2)

where x ∈ R3, ek ∼ N (0, s2), tk = {1, 11, 21, ...} and the specific parameters (θ)
used for simulation are given in Table 8.1 (first column).

The structure of the model (8.1) will of course usually be hidden and we will
have to identify the structure based on the measurements as given in Figure ??.
As a general principle simple models are preferred over more complex models,
and therefore a first hypothesis could be (Model 1)

dxt = (ut − kext) dt + σ3dωt (8.3)
yk = xtk + ek . (8.4)

As noted above a first approach to model the data could be a 1-state model

(Equations (8.3)-(8.4)). The result of the estimation (~̂θ1) is given in Table 8.1, the
initial value of the state (x30) and the time constant (1/ke) are both captured
quite well, while the uncertainty parameters are way off, the diffusion is
too large and the observation variance is too small (with extremely large
uncertainty).

The parameters in the model are all assumed to be greater than zero, and
it is therefore advisable to estimate parameters in the log-domain, and then
transform back to the original domain before presenting the estimates. The log-
domain estimation is also the explanation for the non-symmetric confidence
intervals in Table 8.1, the confidence intervals are all based on the Hessian
of the likelihood at the optimal parameter values, and confidence intervals
are based on the Wald confidence interval in the transformed (log) domain.
Such intervals could be refined by using profile likelihood based confidence
intervals (see also Section ??).

In order to validate the model and suggest further development, we should
inspect the innovation error. When the model is not time homogeneous, the

18

Table 8.1: Parameter estimates from simulation example, confidence intervals
for the individual parameters are given in parenthesis below the estimates. Last
two rows present the log-likelihood and the number of degrees of freedom.

θ θ̂1 θ̂2 θ̂3
x10 40.000 - 38.819

(29.172,48.466)

x20 35.000 - 107.960 33.421
(75.211,140.710) (29.778,37.064)

x30 11.000 10.657 10.641 10.604
(6.606,14.708) (10.392,10.889) (10.281,10.927)

ka 0.025 - 0.006 0.026
(0.0038.00778) (0.025,0.027)

ke 0.080 0.081 0.056 0.080
(0.071,0.094) (0.0418,0.0743) (0.078,0.083)

σ1 1.000 - - 0.5500
(0.224,1.353)

σ2 0.200 - 3.616 0.282
(2.670,4.898) (0.113,0.704)

σ3 0.050 2.206 0.001 0.001
(1.848,2.634) (2 · 10−55 , 3 · 1048) (9 · 10−56 , 1 · 1049)

s 0.025 0.0002 0.016 0.031
(2 · 10−33 , 2.6 · 1025) (0.0065, 0.0388) (0.020, 0.049)

l(θ̂,~y) - -343.68 -67.85 -19.70
df - 4 7 9

standard error of the prediction will not be constant and the innovation error
should be standardized

rk =
εk√

Σk|k−1

, (8.5)

where the innovation error (εk) is given in (??). All numbers needed to calculate
the standardized residuals can be obtained directly from CTSM-R using the
function predict. Both the autocorrelation and partial autocorrelation (Fig-
ure 8.1) are significant in lag 1 and 2. This suggests a 2-state model for the
innovation error, and hence a 3-state model should be used. Consequently we
can go directly from the 1-state model to the true structure (a 3-state model).

Now we have assumed that a number of the parameters are actually zero,
in a real life situation we might test these parameters using likelihood ratio
tests, or indeed identify them through engineering principles. The parameter
estimates are given in Table 8.1 (θ̂3), in this case the diffusion parameter (σ3)
has an extremely wide confidence interval, and it could be checked if this
parameters should indeed be zero (again using likelihood ratio test), but for
now we will proceed with the residual analysis which is an important part
of model validation (see e.g. [madsen2008]). The autocorrelation and partial
autocorrelation for the 3-state model is shown in Figure 8.2. We see that there
are no values outside the 95% confidence interval, and we can conclude that

19

5 10 15

−
0.

5
0.

5
1.

0

ACF

Lag

PACF

Lag

2 4 6 8 10 14

Figure 8.1: Autocorrelation and partial autocorrelation from a simple (1 state)
model.

5 10 15

−
0.

2
0.

2
0.

6
1.

0

ACF

Lag

PACF

Lag

2 4 6 8 10 14

Figure 8.2: Autocorrelation and partial autocorrelation from the 3-state model
(i.e. the correct model).

there is no evidence against the hypothesis of white noise residuals, i.e. the
model sufficiently describes the data.

Autocorrelation and partial autocorrelations are based on short-term pre-
dictions (in this case 10 minutes) and hence we check the local behavior of the
model. Depending on the application of the model we might be interested
in longer term behavior of the model. Prediction can be made on any hori-
zon using CTSM-R. In particular we can compare deterministic simulation in
CTSM-R (meaning conditioning only on the initial value of the states). Such
a simulation plot is shown in Figure 8.3, here we compare a 2-state model
(see Table 8.1) with the true 3-state model. It is quite evident that Model 2
is not suited for simulation, with the global structure being completely off,
while “simulation” with a 3-state model (with the true structure, but estimated
parameters), gives narrow and reasonable simulation intervals. In the case of
linear SDE-models with linear observation, this “simulation” is exact, but for

20

●●
●

●●
●●●●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●●●●
●

●●●
●●

●●●●●●●
●

●●●
●●●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●
●●●

●●●●
●●●

●
●

●●●●
●●

●

0 200 400 600 800 1000

10
15

20
25

Time

y

●●
●

●●
●●●●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●●●●
●

●●●
●●

●●●●●●●
●

●●●
●●●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●
●●●

●●●●
●●●

●
●

●●●●
●●

●

Figure 8.3: Simulation with Model 2 and 3, dashed gray line: expectatoin of
Model 2, black line: expectation of Model 3, light gray area: 95% prediction
interval for Model 2, dark gray area: 95% prediction interval for Model 3, and
black dots are the observations.

nonlinear models it is recommended to use real simulations e.g. using a Euler
scheme.

The step from a 2-state model (had we initialized our model development
with a 2-state model) to the 3-state model is not at all trivial. It is however clear
that model 2 will not be well suited for simulations. Also the likelihood ratio
test (or AIC/BIC) supports that Model 3 is far better than Model 2, further it
would be reasonable to fix σ3 at zero (in practice a very small number).

21

9 Advanced usage

The strength of CTSM-R in R.

9.1 Profile likelihood

9.2 Stochastic Partial Differential Equation

Solar power production of a large PV facility was modelled using a stochastic
partial differential equation. The SPDE was discretized into a set of coupled
stochastic ordinary differential equations. The model is a linear model with
time input dependent transition matrix (A(θ, u)). Normally CTSM-R would
treat such a model as a non-linear model, but a modified version was used here
to enfore the linear model structure. The data consisted of 12 independent time
series and thus the loglikelihood was further parallelized. For further details
see [emil˙jasa˙2015].

9.3 Population modeling

See [juhl˙]

22

Part III

Mathematical Details

23

10 Maximum likelihood estimation

Given a particular model structure, maximum likelihood (ML) estimation of
the unknown parameters can be performed by finding the parameters θ that
maximize the likelihood function of a given sequence of measurements y0, y1,
. . . , yk, . . . , yN . By introducing the notation:

Yk = [yk, yk−1, . . . , y1, y0] (10.1)

the likelihood function is the joint probability density:

L(θ;YN) = p(YN |θ) (10.2)

or equivalently:

L(θ;YN) =

(
N

∏
k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (10.3)

where the rule P(A ∩ B) = P(A|B)P(B) has been applied to form a product
of conditional probability densities. In order to obtain an exact evaluation of
the likelihood function, the initial probability density p(y0|θ) must be known
and all subsequent conditional densities must be determined by successively
solving Kolmogorov’s forward equation and applying Bayes’ rule [7], but this
approach is computationally infeasible in practice. However, since the diffusion
terms in the above model structures do not depend on the state variables, a
simpler alternative can be used. More specifically, a method based on Kalman
filtering can be applied for linear time invariant (LTI) and linear time varying
(LTV) models, and an approximate method based on extended Kalman filtering
can be applied for nonlinear models. The latter approximation can be applied,
because the stochastic differential equations considered are driven by Wiener
processes, and because increments of a Wiener process are Gaussian, which
makes it reasonable to assume, under some regularity conditions, that the
conditional densities can be well approximated by Gaussian densities. The
Gaussian density is completely characterized by its mean and covariance, so
by introducing the notation:

ŷk|k−1 = E[yk|Yk−1, θ] (10.4)

Rk|k−1 = V[yk|Yk−1, θ] (10.5)

and:
εk = yk − ŷk|k−1 (10.6)

24

the likelihood function can be written as follows:

L(θ;YN) =

 N

∏
k=1

exp
(
− 1

2 εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ) (10.7)

where, for given parameters and initial states, εk and Rk|k−1 can be computed
by means of a Kalman filter (LTI and LTV models) or an extended Kalman
filter (NL models) as shown in Sections 11.1 and 11.2 respectively. Further
conditioning on y0 and taking the negative logarithm gives:

− ln (L(θ;YN |y0)) =
1
2

N

∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)
+

1
2

(
N

∑
k=1

l

)
ln(2π)

(10.8)

and ML estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (L(θ;YN |y0))} (10.9)

25

11 Kalman Filters

The general idea of the Kalman filter methods used by CTSM, is the calculation
of conditional second order moments. For linear systems the filter is exact
(except possibly errors due to numerial integration). For nonlinear systems the
filter is an approximation (linearizations).

In this part we will use the following short hand notation for the conditional
second order moment representation

x̂t|k =E[Xt|Ytk , θ] (11.1)

x̂l|k =E[Xtl |Ytk , θ] (11.2)

Pt|k =V[Xt|Ytk , θ] (11.3)

Pl|k =V[Xtl |Ytk , θ] (11.4)

Rl|k =V[Ytl |Ytk , θ] (11.5)

where t is continous time, tk is the time of measurement number k, and Ytk =
[y1, ..., yk] (and yk = ytk).

11.1 Linear Filter

The simplest continuous-discrete time stochastic model is the linear time in-
variant model, we write it in it’s most general form

dxt =(Axt + But)dt + σdwt (11.6)
yk =Cxtk + Duk + ek; ek ∼ N(0, Sk) (11.7)

where Sk = S(uk, tk). We see that even though the model is named linear
time invariant, it is allowed to depend on time, but only in the specific way
indicated in (11.6)-(11.7).

For the linear time invariant models, εk and Rk|k−1 can be computed for a
given set of parameters θ and initial states x0 by means of a continuous-discrete
Kalman filter.

Theorem 1 (Continuous-discrete time Linear Kalman filter) With given initial
conditions x̂1|0 = x0, and P1|0 = V0, the linear Kalman filter is given by the output
prediction equations:

ŷk|k−1 = Cx̂k|k−1 + Duk (11.8)

Rk|k−1 = CPk|k−1CT + Sk (11.9)

26

the innovation equation:

εk = yk − ŷk|k−1 (11.10)

the Kalman gain equation:

Kk = Pk|k−1CT R−1
k|k−1 (11.11)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (11.12)

Pk|k = Pk|k−1 − KkRk|k−1KT
k (11.13)

and the state prediction equations:

dx̂t|k
dt

= Ax̂t|k + But , t ∈ [tk, tk+1[(11.14)

dPt|k
dt

= APt|k + Pt|k AT + σσT , t ∈ [tk, tk+1[(11.15)

where the following shorthand notation applies

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)

σ = σ(θ) , S = S(θ)
(11.16)

Initial conditions (x̂t|t0
= x0 and Pt|t0

= P0), for the Kalman filter may either
be pre-specified or estimated along with the parameters as part of the overall
problem.

In order to show that the Kalman filter holds for linear time invariant
systems consider the initial value problem

dxt =(Axt + But)dt + σdwt (11.17)
E[X0] =x0 (11.18)
V[X0] =V0. (11.19)

Now consider the transformation

Zt = e−AtXt , (11.20)

then by Itô’s Lemma, it can be shown that the process Zt is governed by the Itô
stochastic differential equation

dZt = e−AtB(t)dt + e−Atσdωt (11.21)

with initial conditions equal the initial conditions of Xt. The solution to (11.21)
is given by the integral equation

Zt = Z0 +
∫ t

0
e−AtB(s)ds +

∫ t

0
e−Asσ(s)dωs (11.22)

27

now the expectation of Zt is given by

E[Zt] =E[Z0] +
∫ t

0
e−AtB(s)ds (11.23)

and the variance is

V[Zt] = V[Z0] + V
[∫ t

0
e−Asσdωs

]
(11.24)

=V[Z0] + E

[(∫ t

0
e−Asσdωs

)(∫ t

0
e−Asσdωs

)T
]

(11.25)

=V[Z0] +
∫ t

0
e−AsσσTe−ATsds, (11.26)

where we have used Itô isometri to get the last equation. Now do the inverse
transformation to get the second order moment representation

x̂t|0 =eAt x̂0 +
∫ t

0
eAtBusds (11.27)

Pt|0 =eAtV0eAT t + eAt
∫ t

0
e−AsσσTe−ATsdseAT t (11.28)

to get the differential formulation given in Theorem 1, differentiate (11.27)
and (11.28) with respect to time. In each step the initial values x0 and V0 are
replaced by the filter estimates xk|k and Pk|k.

Input interpolation

The input will only be given at discrete time points and the value of us (s ∈
(tk, tk+1)) is calculated by

us =

{
uk ; zero order hold
uk+1−uk
tk+1−tk

(s− tk) + uk ; first order hold (11.29)

Evaluation of the integrals

Efficient evaluation of the integrals over the matrix exponentials given in (11.27)
and (11.28) are by no means a trivial task, but only the principles are given
here, while more specific computational issues are given in Chapter 17.

11.2 Extended Kalman Filter

For non-linear models the innovation error vectors (εk) and their covariance
matrices Rk|k−1 can be computed (approximated) recursively by means of the
Extended Kalman Filter (EKF) as outlined in the following.

Consider first the linear time-varying model

dXt = (A(ut, t, θ)Xt + B(ut, t, θ)) dt + σ(ut, t, θ)dωt (11.30)
Yk = C(uk, tk, θ)Xk + ek, (11.31)

28

in the following we will use A(t), B(t), and σ(t) as short hand notation for
A(ut, t, θ), B(ut, t, θ), and σ(ut, t, θ).

We will restrict ourselves to the initial value problem; solve (11.30) (for
t ∈ [tk, tk+1) given that the initial condition Xtk ∼ N(x̂k|k, Pk|k). This is the kind
of solution we would get from the ordinary Kalman Filter in the update step.

The linear time-varying system in (11.30)-(11.31) will be used to approxi-
mate nonlinear system in the section, but the derivations below will also show
how linear time-varying systems can be solved. For linear timevarying systems
the Kalman filter equations are still exact. We treat them here as nonlinear
systems because they are formally treated as nonlinear systems by CTSM-R.
However the linearizations given below is then not approximations but exact,
but the exponential integrals are evaluated by forward integration of the ODE
given in the Kalman Filter (just as for the nonlinear systems).

Now if we consider the transformation

Zt = e
−
∫ t

tk
A(s)ds

Xt (11.32)

then by Itô’s Lemma, it can be shown that the process Zt is governed by the Itô
stochastic differential equation

dZt = e
−
∫ t

tk
A(s)ds

B(t)dt + e
−
∫ t

tk
A(s)ds

σ(t)dωt (11.33)

with initial conditions Ztk ∼ N(x̂k|k, Pk|k). The solution to (11.33) is given by
the integral equation

Zt = Ztk +
∫ t

tk

e
−
∫ u

tk
A(u)du

B(s)ds +
∫ t

tk

e
−
∫ s

tk
A(u)du

σ(s)dωs (11.34)

Now inserting the inverse of the transformation gives

Xt = e
∫ t

tk
A(s)ds

X0 + e
∫ t

tk
A(s)ds

∫ t

tk

e
−
∫ u

tk
A(u)du

B(s)ds+

e
∫ t

tk
A(s)ds

∫ t

tk

e
−
∫ s

tk
A(u)du

σ(s)dωs (11.35)

Taking the exception and variance on both sides of (11.35) gives

x̂t|k = e
∫ t

tk
A(s)ds

x̂t|k + e
−
∫ t

tk
A(s)ds

∫ t

tk

e
−
∫ u

tk
A(u)du

B(s)ds (11.36)

Pt|k = e
∫ t

tk
A(s)ds

Pt|ke
∫ t

tk
A(s)Tds

+ (11.37)

e
∫ t

tk
A(s)ds

V
[∫ t

tk

e
−
∫ s

tk
A(u)du

σ(s)dωs

]
e
∫ t

tk
A(s)Tds

= e
∫ t

tk
A(s)ds

V[X0]e
∫ t

tk
A(s)Tds

+

e
∫ t

tk
A(s)ds

∫ t

tk

e
−
∫ s

tk
A(u)du

σ(s)σ(s)Te
−
∫ s

tk
A(u)Tdu

dse
∫ t

tk
AT(s)ds

(11.38)

29

where we have used Itô isometry in the second equation for the variance. Now
differentiation the above expression with respect to time gives

dx̂t|k
dt

= A(t)x̂t|k + B(t) (11.39)

dPt|k
dt

= A(t)Pt|k + Pt|k A(t)T + σ(t)σ(t)T (11.40)

with initial conditions given by x̂k|k and Pk|k.
For the non-linear case

dXt = f (Xt, ut, t, θ)dt + σ(ut, t, θ)dωt (11.41)
Yk = h(Xk, uk, tk, θ) + ek (11.42)

we introduce the Jacobian of f around the expectation of Xt (x̂t = E[Xt]), we
will use the following short hand notation

A(t) =
∂ f (x, ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k

, f (t) = f (x̂t|k, ut, t, θ) (11.43)

where x̂t is the expectation of Xt at time t, this implies that we can write the
first order Taylor expansion of (11.41) as

dXt ≈
[

f (t) + A(t)(Xt − x̂t|k)
]

dt + σ(t)dωt. (11.44)

Using the results from the linear time varying system above we get the
following approximate solution to the (11.44)

dx̂t|k
dt
≈ f (t) (11.45)

dPt|k
dt
≈ A(t)Pt|k + Pt|k AT(t) + σ(t)σT(t) (11.46)

with initial conditions E[Xtk] = x̂k|k and V[Xtk] = Pk|k. Equations (11.45) and
(11.46) constitute the basis of the prediction step in the Extended Kalman Filter,
which for completeness is given below

Theorem 2 (Continuous-discrete time Extended Kalman Filter) With given ini-
tial conditions for the x̂1|0 = x0 and P1|0 = V0 the Extended Kalman Filter approxi-
mations are given by; the output prediction equations:

ŷk|k−1 = h(x̂k|k−1, uk, tk, θ) (11.47)

Rk|k−1 = CkPk|k−1CT
k + Sk (11.48)

the innovation and Kalman gain equation:

εk =yk − ŷk|k−1; (11.49)

Kk =Pk|k−1CT
k

(
Rk|k−1

)−1
(11.50)

30

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk; (11.51)

Pk|k = Pk|k−1 − KkRk|k−1KT
k (11.52)

and the state prediction equations:

dx̂t|k
dt

= f (x̂t|k, ut, t, θ) , t ∈ [tk, tk+1[(11.53)

dPt|tk

dt
= A(t)Pt|tk

+ Pt|tk
A(t)T + σ(t)σ(t)T , t ∈ [tk, tk+1[(11.54)

where the following shorthand notation has been applied:

A(t) =
∂ f (x, ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k−1

Ck =
∂h(x, utk , tk, θ)

∂x

∣∣∣∣
x=x̂k|k−1

(11.55)

σ(t) = σ(ut, t, θ) Sk = S(uk, tk, θ) (11.56)

The ODEs are solved by numerical integration schemes1, which ensures
intelligent re-evaluation of A and σ in (11.54).

The prediction step was covered above and the updating step can be derived
from linearization of the observation equation and the projection theorem
([7]). From the construction above it is clear that the approximation is only
likely to hold if the nonlinearities are not too strong. This implies that the
sampling frequency is fast enough for the prediction equations to be a good
approximation and that the accuracy in the observation equation is good
enough for the Gaussian approximation to hold approximately. Even though
“simulation of mean”, through the prediction equation, is available in CTSM-
R, it is recommended that mean simulation results are verified (or indeed
performed), by real stochastic simulations (e.g. by simple Euler simulations).

11.3 Iterated extended Kalman filtering

The sensitivity of the extended Kalman filter to nonlinear effects not only
means that the approximation to the true state propagation solution provided
by the solution to the state prediction equations (11.53) and (11.54) may be too
crude. The presence of such effects in the output prediction equations (11.47)
and (11.48) may also influence the performance of the filter. An option has
therefore been included in CTSM-R for applying the iterated extended Kalman
filter [7], which is an iterative version of the extended Kalman filter that consists
of the modified output prediction equations:

ŷi
k|k−1 = h(ηi, uk, tk, θ) (11.57)

Ri
k|k−1 = CiPk|k−1CT

i + S (11.58)

1The specific implementation is based on the algorithms of [5], and to be able to use this
method to solve (11.53) and (11.54) simultaneously, the n-vector differential equation in (11.53)
has been augmented with an n× (n + 1)/2-vector differential equation corresponding to the
symmetric n× n-matrix differential equation in (11.54).

31

the modified innovation equation:

εi
k = yk − ŷi

k|k−1 (11.59)

the modified Kalman gain equation:

Ki
k = Pk|k−1CT

i (Ri
k|k−1)

−1 (11.60)

and the modified updating equations:

ηi+1 = x̂k|k−1 + Kk(ε
i
k − Ci(x̂k|k−1 − ηi)) (11.61)

Pk|k = Pk|k−1 − Ki
kRi

k|k−1(K
i
k)

T (11.62)

where:

Ci =
∂h
∂xt

∣∣∣∣
x=ηi ,u=uk ,t=tk ,θ

(11.63)

and η1 = x̂k|k−1. The above equations are iterated for i = 1, . . . , M, where M is
the maximum number of iterations, or until there is no significant difference
between consecutive iterates, whereupon x̂k|k = ηM is assigned. This way, the
influence of nonlinear effects in (11.47) and (11.48) can be reduced.

32

12 Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN) =
p(YN |θ)p(θ)

p(YN)
∝ p(YN |θ)p(θ) (12.1)

and subsequently finding the parameters that maximize this function, i.e. by
performing maximum a posteriori (MAP) estimation. A nice feature of this
expression is the fact that it reduces to the likelihood function, when no prior
information is available (p(θ) uniform), making ML estimation a special case
of MAP estimation. In fact, this formulation also allows MAP estimation on a
subset of the parameters (p(θ) partly uniform). By introducing the notation1:

µθ = E{θ} (12.2)
Σθ = V{θ} (12.3)

and:
εθ = θ− µθ (12.4)

and by assuming that the prior probability density of the parameters is Gaus-
sian, the posterior probability density function can be written as follows:

p(θ|YN) ∝

 N

∏
k=1

exp
(
− 1

2 εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ)

×
exp

(
− 1

2 εT
θ Σ−1

θ εθ

)
√

det(Σθ)
(√

2π
)p

(12.5)

Further conditioning on y0 and taking the negative logarithm gives:

− ln (p(θ|YN , y0)) ∝
1
2

N

∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)
+

1
2

((
N

∑
k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2

εT
θ Σ−1

θ εθ

(12.6)

1In practice Σθ is specified as Σθ = σθRθσθ, where σθ is a diagonal matrix of the prior standard
deviations and Rθ is the corresponding prior correlation matrix.

33

and MAP estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|YN , y0))} (12.7)

34

13 Using multiple independent data
sets

If, multiple consecutive, sequences of measurements, i.e. Y1
N1

, Y2
N2

, . . . , Y i
Ni

,
. . . , YS

NS
, are available. Then a similar estimation method can be applied by

expanding the expression for the posterior probability density function to the
general form:

p(θ|Y) ∝

 S

∏
i=1

 Ni

∏
k=1

exp
(
− 1

2 (ε
i
k)

T(Ri
k|k−1)

−1εi
k

)
√

det(Ri
k|k−1)

(√
2π
)l

 p(yi
0|θ)


×

exp
(
− 1

2 εT
θ Σ−1

θ εθ

)
√

det(Σθ)
(√

2π
)p

(13.1)

where:
Y = [Y1

N1
,Y2

N2
, . . . ,Y i

Ni
, . . . ,YS

NS
] (13.2)

and where the individual sequences of measurements are assumed to be
stochastically independent. This formulation allows MAP estimation on mul-
tiple data sets, but, as special cases, it also allows ML estimation on multiple
data sets (p(θ) uniform), MAP estimation on a single data set (S = 1) and ML
estimation on a single data set (p(θ) uniform, S = 1). Further conditioning on:

y0 = [y1
0 , y2

0, . . . , yi
0, . . . , yS

0] (13.3)

and taking the negative logarithm gives:

− ln (p(θ|Y, y0)) ∝
1
2

S

∑
i=1

Ni

∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)

T(Ri
k|k−1)

−1εi
k

)
+

1
2

((
S

∑
i=1

Ni

∑
k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2

εT
θ Σ−1

θ εθ

(13.4)

and estimates of the parameters (and optionally of the initial states) can now
be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|Y, y0))} (13.5)

35

Currently initial values for all data sets have to be equal in order to use
multiple datasets in CTSM-R directly, however it is not difficult to program the
objective funtion allowing multiple initial values, using predict(), the definition
of the log-likelihood, and some optimiser from R.

36

14 Missing observations

The algorithms of the parameter estimation methods described above also
make it easy to handle missing observations, i.e. to account for missing values
in the output vector yi

k, for some i and some k, when calculating the terms:

1
2

S

∑
i=1

Ni

∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)

T(Ri
k|k−1)

−1εi
k

)
(14.1)

and:

1
2

((
S

∑
i=1

Ni

∑
k=1

l

)
+ p

)
ln(2π) (14.2)

in (13.4). To illustrate this, the case of extended Kalman filtering for NL models
is considered, but similar arguments apply in the case of Kalman filtering for
LTI and LTV models. The usual way to account for missing or non-informative
values in the extended Kalman filter is to formally set the corresponding
elements of the measurement error covariance matrix S in (11.48) to infinity,
which in turn gives zeroes in the corresponding elements of the inverted output
covariance matrix R−1

k|k−1 and the Kalman gain matrix Kk, meaning that no
updating will take place in (11.51) and (11.52) corresponding to the missing
values. This approach cannot be used when calculating (14.1) and (14.2),
however, because a solution is needed which modifies both εi

k, Ri
k|k−1 and l to

reflect that the effective dimension of yi
k is reduced. This is accomplished by

replacing (1.2) with the alternative measurement equation:

yk = E (h(xk, uk, tk, θ) + ek) (14.3)

where E is an appropriate permutation matrix, which can be constructed from
a unit matrix by eliminating the rows that correspond to the missing values in
yk. If, for example, yk has three elements, and the one in the middle is missing.
Then the appropriate permutation matrix is given as follows:

E =

[
1 0 0
0 0 1

]
(14.4)

Equivalently, the equations of the extended Kalman filter are replaced with the
following alternative output prediction equations:

ŷk|k−1 = Eh(x̂k|k−1, uk, tk, θ) (14.5)

Rk|k−1 = ECPk|k−1CTET + ESET (14.6)

37

the alternative innovation equation:

εk = yk − ŷk|k−1 (14.7)

the alternative Kalman gain equation:

Kk = Pk|k−1CTET R−1
k|k−1 (14.8)

and the alternative updating equations:

x̂k|k = x̂k|k−1 + Kkεk (14.9)

Pk|k = Pk|k−1 − KkRk|k−1KT
k (14.10)

The state prediction equations remain the same, and the above replacements in
turn provide the necessary modifications of (14.1) to:

1
2

S

∑
i=1

Ni

∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)

T(Ri
k|k−1)

−1εi
k

)
(14.11)

whereas modifying (14.2) amounts to a simple reduction of l for the particular
values of i and k with the number of missing values in yi

k.

38

15 Robust Estimation

15.1 Huber’s M

The objective function (13.4) of the general formulation (13.5) is quadratic in the
innovations εi

k, and this means that the corresponding parameter estimates are
heavily influenced by occasional outliers in the data sets used for the estimation.
To deal with this problem, a robust estimation method is applied, where the
objective function is modified by replacing the quadratic term:

νi
k = (εi

k)
T(Ri

k|k−1)
−1εi

k (15.1)

with a threshold function ϕ(νi
k), which returns the argument for small values

of νi
k, but is a linear function of εi

k for large values of νi
k, i.e.:

ϕ(νi
k) =

{
νi

k , νi
k < c2

c(2
√

νi
k − c) , νi

k ≥ c2 (15.2)

where c > 0 is a constant. The derivative of this function with respect to εi
k

is known as Huber’s ψ-function [6] and belongs to a class of functions called
influence functions, because they measure the influence of εi

k on the objective
function. Several such functions are available, but Huber’s ψ-function has been
found to be most appropriate in terms of providing robustness against outliers
without rendering optimisation of the objective function infeasible.

39

16 Various statistics

Within CTSM-R an estimate of the uncertainty of the parameter estimates is
obtained by using the fact that by the central limit theorem the estimator in
(13.5) is asymptotically Gaussian with mean θ and covariance:

Σθ̂ = H−1 (16.1)

where the matrix H is given by:

{hij} = −E

{
∂2

∂θi∂θj
ln (p(θ|Y, y0))

}
, i, j = 1, . . . , p (16.2)

and where an approximation to H can be obtained from:

{hij} ≈ −
(

∂2

∂θi∂θj
ln (p(θ|Y, y0))

)∣∣∣
θ=θ̂

, i, j = 1, . . . , p (16.3)

which is the Hessian evaluated at the minimum of the objective function, i.e.
H|θ=θ̂. As an overall measure of the uncertainty of the parameter estimates,
the negative logarithm of the determinant of the Hessian is computed, i.e.:

− ln
(
det

(
Hi|θ=θ̂

))
. (16.4)

The lower the value of this statistic, the lower the overall uncertainty of the
parameter estimates. A measure of the uncertainty of the individual parameter
estimates is obtained by decomposing the covariance matrix as follows:

Σθ̂ = σθ̂Rσθ̂ (16.5)

into σθ̂, which is a diagonal matrix of the standard deviations of the parameter
estimates, and R, which is the corresponding correlation matrix.

The asymptotic Gaussianity of the estimator in (13.5) also allows marginal
t-tests to be performed to test the hypothesis:

H0: θj = 0 (16.6)

against the corresponding alternative:

H1: θj 6= 0 (16.7)

i.e. to test whether a given parameter θj is marginally insignificant or not.
The test quantity is the value of the parameter estimate divided by the stan-
dard deviation of the estimate, and under H0 this quantity is asymptotically

40

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

P(t < zt(θ̂j)) P(<−(t, zt(θ̂j)) V t > zt(θ̂j))

−4 −2 0 2 4

Figure 16.1: Illustration of computation of P(t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|) via
(16.11).

t-distributed with a number of degrees of freedom (DF) that equals the total
number of observations minus the number of estimated parameters, i.e.:

zt(θ̂j) =
θ̂j

σθ̂j

∈ t(DF) = t

((
S

∑
i=1

Ni

∑
k=1

l

)
− p

)
(16.8)

where, if there are missing observations in yi
k for some i and some k, the

particular value of log-likelihood (l) is reduced with the number of missing
values in yi

k. The critical region for a test on significance level α is given as
follows:

zt(θ̂j) < t(DF) α
2
∨ zt(θ̂j) > t(DF)1− α

2
(16.9)

and to facilitate these tests, CTSM-R computes zt(θ̂j) as well as the probabilities:

P
(
t<−|zt(θ̂j)| ∨ t>|zt(θ̂j)|

)
(16.10)

41

for j = 1, . . . , p. Figure 16.1 shows how these probabilities should be inter-
preted and illustrates their computation via the following relation:

P
(
t<−|zt(θ̂j)| ∨ t>|zt(θ̂j)|

)
= 2

(
1− P(t < |zt(θ̂j)|)

)
(16.11)

with P(t < |zt(θ̂j)|) obtained by approximating the cumulative probability den-
sity of the t-distribution t(DF) with the cumulative probability density of the
standard Gaussian distribution N(0, 1) using the test quantity transformation:

zN(θ̂j) = zt(θ̂j)
1− 1

4DF√
1 +

(zt(θ̂j))2

2DF

∈ N(0, 1) (16.12)

The cumulative probability density of the standard Gaussian distribution is
computed by approximation using a series expansion of the error function.

Validation data generation

To facilitate e.g. residual analysis, CTSM can also be used to generate vali-
dation data, i.e. state and output estimates corresponding to a given input data
set, using either pure simulation, prediction, filtering or smoothing.

Simulation of mean

The state and output estimates that can be generated by means of pure si-
mulation are x̂k|0 and ŷk|0, k = 0, . . . , N, along with their standard deviations
SD(x̂k|0) =

√
diag(Pk|0) and SD(ŷk|0) =

√
diag(Rk|0), k = 0, . . . , N. The esti-

mates are generated by the (extended) Kalman filter without updating.

Prediction data generation

The state and output estimates that can be generated by prediction are x̂k|k−j,
j ≥ 1, and ŷk|k−j, j ≥ 1, k = 0, . . . , N, along with their standard deviations
SD(x̂k|k−j) =

√
diag(Pk|k−j) and SD(ŷk|k−j) =

√
diag(Rk|k−j), k = 0, . . . , N. The

estimates are generated by the (extended) Kalman filter with updating.

Filtering data generation

The state estimates that can be generated by filtering are x̂k|k, k = 0, . . . , N,
along with their standard deviations SD(x̂k|k) =

√
diag(Pk|k), k = 0, . . . , N.

The estimates are generated by the (extended) Kalman filter with updating.

Smoothing data generation

The state estimates that can be generated by smoothing are x̂k|N , k = 0, . . . , N,
along with their standard deviations SD(x̂k|N) =

√
diag(Pk|N), k = 0, . . . , N.

The estimates are generated by means of a nonlinear smoothing algorithm
based on the extended Kalman filter (for a formal derivation of the algorithm,
see [4]). The starting point is the following set of formulas:

x̂k|N = Pk|N

(
P−1

k|k−1 x̂k|k−1 + P−1
k|k x̂k|k

)
(16.13)

Pk|N =
(

P−1
k|k−1 + P−1

k|k

)−1
(16.14)

42

which states that the smoothed estimate can be computed by combining a
forward filter estimate based only on past information with a backward filter
estimate based only on present and “future” information. The forward filter es-
timates x̂k|k−1, k = 1, . . . , N, and their covariance matrices Pk|k−1, k = 1, . . . , N,
can be computed by means of the EKF formulation given above, which is
straightforward. The backward filter estimates x̂k|k, k = 1, . . . , N, and their
covariance matrices Pk|k, k = 1, . . . , N, on the other hand, must be computed
using a different set of formulas. In this set of formulas, a transformation of
the time variable is used, i.e. τ = tN − t, which gives the SDE model, on which
the backward filter is based, the following system equation:

dxtN−τ = − f (xtN−τ , utn−τ , tN − τ, θ)dτ − σ(utN−τ , tN − τ, θ)dωτ (16.15)

where τ ∈ [0, tN]. The measurement equation remains unchanged. For ease of
implementation a coordinate transformation is also introduced, i.e. st = P−1

t x̂t,
and the basic set of formulas in (16.13)-(16.14) is rewritten as follows:

x̂k|N = Pk|N

(
P−1

k|k−1 x̂k|k−1 + sk|k

)
(16.16)

Pk|N =
(

P−1
k|k−1 + P−1

k|k

)−1
(16.17)

The backward filter consists of the updating equations:

sk|k = sk|k+1 + CT
k S−1

k

(
yk − h(x̂k|k−1, uk, tk, θ) + Ck x̂k|k−1

)
(16.18)

P−1
k|k = P−1

k|k+1 + CT
k S−1

k Ck (16.19)

and the prediction equations:

dstN−τ|k
dτ

= AT
τ stN−τ|k − P−1

tN−τ|kστσT
τ stN−τ|k (16.20)

− P−1
tN−τ|k

(
f (x̂tN−τ|k, utN−τ , tN − τ, θ)− Aτ x̂tN−τ|k

)
(16.21)

dP−1
tN−τ|k
dτ

= P−1
tN−τ|k Aτ + AT

τ P−1
tN−τ|k − P−1

tN−τ|kστσT
τ P−1

tN−τ|k (16.22)

which are solved, e.g. by means of an ODE solver, for τ ∈ [τk, τk+1]. In all of
the above equations the following simplified notation has been applied:

Aτ =
∂ f
∂xt
|x̂tN−τ|k ,utN−τ ,tN−τ,θ , Ck =

∂h
∂xt
|x̂k|k−1,uk ,tk ,θ

στ = σ(utN−τ , tN − τ, θ) , Sk = S(uk, tk, θ)

(16.23)

Initial conditions for the backward filter are sN|N+1 = 0 and P−1
N|N+1 = 0, which

can be derived from an alternative formulation of (16.16)-(16.17):

x̂k|N = Pk|N

(
P−1

k|k x̂k|k + sk|k+1

)
(16.24)

Pk|N =
(

P−1
k|k + P−1

k|k+1

)−1
(16.25)

by realizing that the smoothed estimate must coincide with the forward filter
estimate for k = N. The smoothing feature is only available for NL models.

43

17 Computational issues

17.1 LTV (taken from linear Kalman filter)

where the following shorthand notation applies in the LTV case:

A = A(x̂t|k−1, ut, t, θ) , B = B(x̂t|k−1, ut, t, θ)

C = C(x̂k|k−1, uk, tk, θ) , D = D(x̂k|k−1, uk, tk, θ)

σ = σ(ut, t, θ) , S = S(uk, tk, θ)

(17.1)

where the following shorthand notation applies in the LTV case:

A = A(x̂k|k−1, uk, tk, θ) , B = B(x̂k|k−1, uk, tk, θ)

C = C(x̂k|k−1, uk, tk, θ) , D = D(x̂k|k−1, uk, tk, θ)

σ = σ(uk, tk, θ) , S = S(uk, tk, θ)

(17.2)

and the following shorthand notation applies in the LTI case:

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)

σ = σ(θ) , S = S(θ)
(17.3)

In order to be able to use (11.27) and (11.28), the integrals of both equations
must be computed. For this purpose the equations are rewritten to:

x̂k+1|k = eA(tk+1−tk) x̂k|k +
∫ tk+1

tk

eA(tk+1−s)Busds

= eAτs x̂k|k +
∫ tk+1

tk

eA(tk+1−s)B (α(s− tk) + uk) ds

= Φs x̂k|k +
∫ τs

0
eAsB (α(τs − s) + uk) ds

= Φs x̂k|k −
∫ τs

0
eAssdsBα +

∫ τs

0
eAsdsB (ατs + uk)

(17.4)

44

and:

Pk+1|k = eA(tk+1−tk)Pk|k

(
eA(tk+1−tk)

)T

+
∫ tk+1

tk

eA(tk+1−s)σσT
(

eA(tk+1−s)
)T

ds

= eAτs Pk|k

(
eAτs

)T
+
∫ τs

0
eAsσσT

(
eAs
)T

ds

= ΦsPk|kΦT
s +

∫ τs

0
eAsσσT

(
eAs
)T

ds

(17.5)

where τs = tk+1 − tk and Φs = eAτs , and where:

α =
uk+1 − uk
tk+1 − tk

(17.6)

has been introduced to allow assumption of either zero order hold (α = 0) or
first order hold (α 6= 0) on the inputs between sampling instants. The matrix
exponential Φs = eAτs can be computed by means of a Padé approximation
with repeated scaling and squaring [11]. However, both Φs and the integral in
(17.5) can be computed simultaneously through:

exp
([
−A σσT

0 AT

]
τs

)
=

[
H1(τs) H2(τs)

0 H3(τs)

]
(17.7)

by combining submatrices of the result1 [9], i.e.:

Φs = HT
3 (τs) (17.8)

and: ∫ τs

0
eAsσσT

(
eAs
)T

ds = HT
3 (τs)H2(τs) (17.9)

Alternatively, this integral can be computed from the Lyapunov equation:

ΦsσσTΦT
s − σσT = A

∫ τs

0
eAsσσT

(
eAs
)T

ds

+
∫ τs

0
eAsσσT

(
eAs
)T

dsAT
(17.10)

but this approach has been found to be less feasible. The integrals in (17.4)
are not as easy to deal with, especially if A is singular. However, this problem
can be solved by introducing the singular value decomposition (SVD) of A, i.e.
UΣV T, transforming the integrals and subsequently computing these.

The first integral can be transformed as follows:∫ τs

0
eAssds = U

∫ τs

0
UTeAsUsdsUT = U

∫ τs

0
eÃssdsUT (17.11)

1Within CTSM the specific implementation is based on the algorithms of [12].

45

and, if A is singular, the matrix Ã = ΣV TU = UT AU has a special structure:

Ã =

[
Ã1 Ã2
0 0

]
(17.12)

which allows the integral to be computed as follows:∫ τs

0
eÃssds =

∫ τs

0

(
Is +

[
Ã1 Ã2
0 0

]
s2 +

[
Ã1 Ã2
0 0

]2 s3

2
+ · · ·

)
ds

=
∫ τs

0

(
Is +

[
Ã1 Ã2
0 0

]
s2 +

[
Ã2

1 Ã1 Ã2
0 0

]
s3

2
+ · · ·

)
ds

=

∫ τs
0 eÃ1ssds

∫ τs
0 Ã−1

1

(
eÃ1s − I

)
sÃ2ds

0 I τ2
s
2


=

[[
Ã−1

1 eÃ1s
(

Is− Ã−1
1

)]τs

0
0

Ã−1
1

[
Ã−1

1 eÃ1s
(

Is− Ã−1
1

)
− I s2

2

]τs

0
Ã2

I τ2
s
2

]

=

[
Ã−1

1

(
−Ã−1

1
(
Φ̃1

s − I
)
+ Φ̃1

s τs

)
0

Ã−1
1

(
Ã−1

1

(
−Ã−1

1
(
Φ̃1

s − I
)
+ Φ̃1

s τs

)
− I τ2

s
2

)
Ã2

I τ2
s
2

]

(17.13)

where Φ̃1
s is the upper left part of the matrix:

Φ̃s = UTΦsU =

[
Φ̃1

s Φ̃2
s

0 I

]
(17.14)

The second integral can be transformed as follows:∫ τs

0
eAsds = U

∫ τs

0
UTeAsUdsUT = U

∫ τs

0
eÃsdsUT (17.15)

and can subsequently be computed as follows:∫ τs

0
eÃsds =

∫ τs

0

(
I +

[
Ã1 Ã2
0 0

]
s +

[
Ã1 Ã2
0 0

]2 s2

2
+ · · ·

)
ds

=
∫ τs

0

(
I +

[
Ã1 Ã2
0 0

]
s +

[
Ã2

1 Ã1 Ã2
0 0

]
s2

2
+ · · ·

)
ds

=

[∫ τs
0 eÃ1sds

∫ τs
0 Ã−1

1

(
eÃ1s − I

)
Ã2ds

0 Iτs

]

=

[[
Ã−1

1 eÃ1s
]τs

0
Ã−1

1

[
Ã−1

1 eÃ1s − Is
]τs

0
Ã2

0 Iτs

]

=

[
Ã−1

1
(
Φ̃1

s − I
)

Ã−1
1

(
Ã−1

1
(
Φ̃1

s − I
)
− Iτs

)
Ã2

0 Iτs

]

(17.16)

46

Depending on the specific singularity of A (see Section 17.1 for details on
how this is determined in CTSM-R) and the particular nature of the inputs,
several different cases are possible as shown in the following.

General case: Singular A, first order hold on inputs

In the general case, the Kalman filter prediction can be calculated as follows:

x̂j+1 = Φs x̂j −U
∫ τs

0
eÃssdsUT Bα + U

∫ τs

0
eÃsdsUT B

(
ατs + uj

)
(17.17)

with:

∫ τs

0
eÃsds =

[
Ã−1

1
(
Φ̃1

s − I
)

Ã−1
1

(
Ã−1

1
(
Φ̃1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(17.18)

and:

∫ τs

0
eÃssds =

[
Ã−1

1

(
−Ã−1

1
(
Φ̃1

s − I
)
+ Φ̃1

s τs

)
0

Ã−1
1

(
Ã−1

1

(
−Ã−1

1
(
Φ̃1

s − I
)
+ Φ̃1

s τs

)
− I τ2

s
2

)
Ã2

I τ2
s
2

] (17.19)

Special case no. 1: Singular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φs x̂j + U
∫ τs

0
eÃsdsUT Buj (17.20)

with:

∫ τs

0
eÃsds =

[
Ã−1

1
(
Φ̃1

s − I
)

Ã−1
1

(
Ã−1

1
(
Φ̃1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(17.21)

Special case no. 2: Nonsingular A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φs x̂j −
∫ τs

0
eAssdsBα +

∫ τs

0
eAsdsB

(
ατs + uj

)
(17.22)

with: ∫ τs

0
eAsds = A−1 (Φs − I) (17.23)

and: ∫ τs

0
eAssds = A−1

(
−A−1 (Φs − I) + Φsτs

)
(17.24)

47

Special case no. 3: Nonsingular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φs x̂j +
∫ τs

0
eAsdsBuj (17.25)

with: ∫ τs

0
eAsds = A−1 (Φs − I) (17.26)

Special case no. 4: Identically zero A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j −
∫ τs

0
eAssdsBα +

∫ τs

0
eAsdsB

(
ατs + uj

)
(17.27)

with: ∫ τs

0
eAsds = Iτs (17.28)

and: ∫ τs

0
eAssds = I

τ2
s
2

(17.29)

Special case no. 5: Identically zero A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j +
∫ τs

0
eAsdsBuj (17.30)

with: ∫ τs

0
eAsds = Iτs (17.31)

Determination of singularity

Computing the singular value decomposition (SVD) of a matrix is a computa-
tionally expensive task, which should be avoided if possible. Within CTSM
the determination of whether or not the A matrix is singular and thus whether
or not the SVD should be applied, therefore is not based on the SVD itself, but
on an estimate of the reciprocal condition number, i.e.:

κ̂−1 =
1

|A||A−1| (17.32)

where |A| is the 1-norm of the A matrix and |A−1| is an estimate of the 1-norm
of A−1. This quantity can be computed much faster than the SVD, and only if
its value is below a certain threshold (e.g. 1e-12), the SVD is applied.

48

Factorization of covariance matrices

The (extended) Kalman filter may be numerically unstable in certain situa-
tions. The problem arises when some of the covariance matrices, which are
known from theory to be symmetric and positive definite, become non-positive
definite because of rounding errors. Consequently, careful handling of the
covariance equations is needed to stabilize the (extended) Kalman filter. Within
CTSM, all covariance matrices are therefore replaced with their square root
free Cholesky decompositions [3], i.e.:

P = LDLT (17.33)

where P is the covariance matrix, L is a unit lower triangular matrix and D is a
diagonal matrix with dii > 0, ∀i. Using factorized covariance matrices, all of
the covariance equations of the (extended) Kalman filter can be handled by
means of the following equation for updating a factorized matrix:

P̃ = P + GDgGT (17.34)

where P̃ is known from theory to be both symmetric and positive definite and
P is given by (17.33), and where Dg is a diagonal matrix and G is a full matrix.
Solving this equation amounts to finding a unit lower triangular matrix L̃ and
a diagonal matrix D̃ with d̃ii > 0, ∀i, such that:

P̃ = L̃D̃L̃T (17.35)

and for this purpose a number of different methods are available, e.g. the
method described by [3], which is based on the modified Givens transformation,
and the method described by [13], which is based on the modified weighted
Gram-Schmidt orthogonalization. Within CTSM the specific implementation
of the (extended) Kalman filter is based on the latter, and this implementation
has been proven to have a high grade of accuracy as well as stability [1].

Using factorized covariance matrices also facilitates easy computation of
those parts of the objective function (13.4) that depend on determinants of
covariance matrices. This is due to the following identities:

det(P) = det(LDLT) = det(D) = ∏
i

dii (17.36)

Optimization issues

CTSM uses a quasi-Newton method based on the BFGS updating formula
and a soft line search algorithm to solve the nonlinear optimization problem
(13.5). This method is similar to the one described by [2], except for the fact
that the gradient of the objective function is approximated by a set of finite
difference derivatives. In analogy with ordinary Newton-Raphson methods for
optimization, quasi-Newton methods seek a minimum of a nonlinear objective
function F (θ): Rp → R, i.e.:

min
θ
F (θ) (17.37)

where a minimum of F (θ) is found when the gradient g(θ) = ∂F (θ)
∂θ satisfies:

g(θ) = 0 (17.38)

49

Both types of methods are based on the Taylor expansion of g(θ) to first order:

g(θi + δ) = g(θi) +
∂g(θ)

∂θ
|θ=θi δ + o(δ) (17.39)

which by setting g(θi + δ) = 0 and neglecting o(δ) can be rewritten as follows:

δi = −H−1
i g(θi) (17.40)

θi+1 = θi + δi (17.41)

i.e. as an iterative algorithm, and this algorithm can be shown to converge to a
(possibly local) minimum. The Hessian Hi is defined as follows:

Hi =
∂g(θ)

∂θ
|θ=θi (17.42)

but unfortunately neither the Hessian nor the gradient can be computed ex-
plicitly for the optimization problem (13.5). As mentioned above, the gradient
is therefore approximated by a set of finite difference derivatives, and a secant
approximation based on the BFGS updating formula is applied for the Hes-
sian. It is the use of a secant approximation to the Hessian that distinguishes
quasi-Newton methods from ordinary Newton-Raphson methods.

Finite difference derivative approximations

Since the gradient g(θi) cannot be computed explicitly, it is approximated by
a set of finite difference derivatives. Initially, i.e. as long as ||g(θ)|| does not
become too small during the iterations of the optimization algorithm, forward
difference approximations are used, i.e.:

gj(θ
i) ≈

F (θi + δjej)−F (θi)

δj
, j = 1, . . . , p (17.43)

where gj(θ
i) is the j’th component of g(θi) and ej is the j’th basis vector. The

error of this type of approximation is o(δj). Subsequently, i.e. when ||g(θ)||
becomes small near a minimum of the objective function, central difference
approximations are used instead, i.e.:

gj(θ
i) ≈

F (θi + δjej)−F (θi − δjej)

2δj
, j = 1, . . . , p (17.44)

because the error of this type of approximation is only o(δ2
j). Unfortunately,

central difference approximations require twice as much computation (twice
the number of objective function evalutions) as forward difference approxi-
mations, so to save computation time forward difference approximations are
used initially. The switch from forward differences to central differences is
effectuated for i > 2p if the line search algorithm fails to find a better value of
θ.

The optimal choice of step length for forward difference approximations is:

δj = η
1
2 θj (17.45)

50

whereas for central difference approximations it is:

δj = η
1
3 θj (17.46)

where η is the relative error of calculating F (θ) [2].

The BFGS updating formula

Since the Hessian Hi cannot be computed explicitly, a secant approximation
is applied. The most effective secant approximation Bi is obtained with the
so-called BFGS updating formula [2], i.e.:

Bi+1 = Bi +
yiyT

i
yT

i si
−

BisisT
i Bi

sT
i Bisi

(17.47)

where yi = g(θi+1)− g(θi) and si = θi+1 − θi. Necessary and sufficient condi-
tions for Bi+1 to be positive definite is that Bi is positive definite and that:

yT
i si > 0 (17.48)

This last demand is automatically met by the line search algorithm. Further-
more, since the Hessian is symmetric and positive definite, it can also be written
in terms of its square root free Cholesky factors, i.e.:

Bi = LiDiLT
i (17.49)

where Li is a unit lower triangular matrix and Di is a diagonal matrix with
di

jj > 0, ∀j, so, instead of solving (17.47) directly, Bi+1 can be found by updating
the Cholesky factorization of Bi as shown in Section 17.1.

The soft line search algorithm

With δi being the secant direction from (17.40) (using Hi = Bi obtained from
(17.47)), the idea of the soft line search algorithm is to replace (17.41) with:

θi+1 = θi + λiδ
i (17.50)

and choose a value of λi > 0 that ensures that the next iterate decreases F (θ)
and that (17.48) is satisfied. Often λi = 1 will satisfy these demands and (17.50)
reduces to (17.41). The soft line search algorithm is globally convergent if each
step satisfies two simple conditions. The first condition is that the decrease in
F (θ) is sufficient compared to the length of the step si = λiδ

i, i.e.:

F (θi+1) < F (θi) + αg(θi)Tsi (17.51)

where α ∈]0, 1[. The second condition is that the step is not too short, i.e.:

g(θi+1)Tsi ≥ βg(θi)Tsi (17.52)

where β ∈]α, 1[. This last expression and g(θi)Tsi < 0 imply that:

yT
i si =

(
g(θi+1)− g(θi)

)T
si ≥ (β− 1)g(θi)Tsi > 0 (17.53)

51

which guarantees that (17.48) is satisfied. The method for finding a value of
λi that satisfies both (17.51) and (17.52) starts out by trying λi = λp = 1. If
this trial value is not admissible because it fails to satisfy (17.51), a decreased
value is found by cubic interpolation using F (θi), g(θi), F (θi + λpδi) and
g(θi + λpδi). If the trial value satisfies (17.51) but not (17.52), an increased
value is found by extrapolation. After one or more repetitions, an admissible
λi is found, because it can be proved that there exists an interval λi ∈ [λ1, λ2]
where (17.51) and (17.52) are both satisfied [2].

Constraints on parameters

In order to ensure stability in the calculation of the objective function in (13.4),
simple constraints on the parameters are introduced, i.e.:

θmin
j < θj < θmax

j , j = 1, . . . , p (17.54)

These constraints are satisfied by solving the optimization problem with respect
to a transformation of the original parameters, i.e.:

θ̃j = ln

(
θj − θmin

j

θmax
j − θj

)
, j = 1, . . . , p (17.55)

A problem arises with this type of transformation when θj is very close to one
of the limits, because the finite difference derivative with respect to θj may
be close to zero, but this problem is solved by adding an appropriate penalty
function to (13.4) to give the following modified objective function:

F (θ) = − ln (p(θ|Y, y0)) + P(λ, θ, θmin, θmax) (17.56)

which is then used instead. The penalty function is given as follows:

P(λ, θ, θmin, θmax) = λ

(
p

∑
j=1

|θmin
j |

θj − θmin
j

+
p

∑
j=1

|θmax
j |

θmax
j − θj

)
(17.57)

for |θmin
j | > 0 and |θmax

j | > 0, j = 1, . . . , p. For proper choices of the Lagrange

multiplier λ and the limiting values θmin
j and θmax

j the penalty function has no
influence on the estimation when θj is well within the limits but will force the
finite difference derivative to increase when θj is close to one of the limits.

Along with the parameter estimates CTSM computes normalized (by mul-
tiplication with the estimates) derivatives of F (θ) and P(λ, θ, θmin, θmax) with
respect to the parameters to provide information about the solution. The
derivatives of F (θ) should of course be close to zero, and the absolute values
of the derivatives of P(λ, θ, θmin, θmax) should not be large compared to the cor-
responding absolute values of the derivatives of F (θ), because this indicates
that the corresponding parameters are close to one of their limits.

52

Bibliography

[1] G. J. Bierman. Factorization Methods for Discrete Sequential Estimation. New
York, USA: Academic Press, 1977.

[2] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, USA: Prentice-
Hall, 1983.

[3] R. Fletcher and J. D. Powell. “On the Modification of LDLT Factori-
zations”. In: Math. Comp. 28 (1974), pp. 1067–1087.

[4] A. Gelb. Applied Optimal Estimation. Cambridge, USA: The MIT Press,
1974.

[5] A. C. Hindmarsh. “ODEPACK, A Systematized Collection of ODE Sol-
vers”. In: Scientific Computing (IMACS Transactions on Scientific Computa-
tion, Vol. 1). Ed. by R. S. Stepleman. North-Holland, Amsterdam, 1983,
pp. 55–64.

[6] P. J. Huber. Robust Statistics. New York, USA: Wiley, 1981.

[7] A. H. Jazwinski. Stochastic Processes and Filtering Theory. New York, USA:
Academic Press, 1970.

[8] Niels Rode Kristensen and Henrik Madsen. Continuous Time Stochastic
Modelling, CTSM 2.3 - Mathematics Guide. Tech. rep. DTU, 2003.

[9] C. F. van Loan. “Computing Integrals Involving the Matrix Exponential”.
In: IEEE Transactions on Automatic Control 23.3 (1978), pp. 395–404.

[10] Dayu Lv, Marc D. Breton, and Leon S. Farhy. “Pharmacokinetics Mod-
eling of Exogenous Glucagon in Type 1 Diabetes Mellitus Patients”. In:
Diabetes Technology & Therapeutics 15.11 (Nov. 2013), pp. 935–941. ISSN:
1520-9156. DOI: 10.1089/dia.2013.0150. (Visited on 01/13/2015).

[11] C. Moler and C. F. van Loan. “Nineteen Dubious Ways to Compute the
Exponential of a Matrix”. In: SIAM Review 20.4 (1978), pp. 801–836.

[12] R. B. Sidje. “Expokit: A Software Package for Computing Matrix Ex-
ponentials”. In: ACM Transactions on Mathematical Software 24.1 (1998),
pp. 130–156.

[13] C. L. Thornton and G. J. Bierman. “UDUT Covariance Factorization for
Kalman Filtering”. In: Control and Dynamic Systems. Ed. by C. T. Leondes.
Academic Press, New York, USA, 1980.

53

https://doi.org/10.1089/dia.2013.0150

Index

options
eps, 11
eta, 11
hubersPsiLimit, 11
iEKFeps, 10
initialVarianceScaling, 10
lambda, 11
maxNumberOfEval, 11
nIEKF, 10
numberOfSubsamples, 10
odeeps, 10
padeApproximationOrder, 11
smallestAbsValueForNormaliz-

ing, 11
svdEps, 11

54

	How to contribute
	Contents
	Introduction
	Why CTSM-R
	Getting started

	Using CTSM-R
	Model object
	Data
	Settings
	Result object
	Functions
	Example
	Advanced usage

	Mathematical Details
	Maximum likelihood estimation
	Kalman Filters
	Maximum a posteriori estimation
	Using multiple independent data sets
	Missing observations
	Robust Estimation
	Various statistics
	Computational issues
	Bibliography
	Index

