
Grey-box modeling of the heat dynamics of a building
with CTSM-R

Rune Juhl Niels Rode Kristensen Peder Bacher Jan Kloppenborg
Henrik Madsen

September 18, 2017

Chapter 1

Introduction

This document is an example of using the R package CTSM-R for grey-box modeling of the
heat dynamics of a building. A two-state model is implemented and the results are analyzed.
Then the two-state model is extended to a three-state model, which is fitted and analyzed, and
compared to the two-state model with a likelihood ratio test, in order to determine if the three-
state model is a more suitable model compared to the two-state model. The data and the two
models are taken from the case-study presented in

1.1 Initiate
To start the modeling a few initialization steps are carried out. Note that here the working
directory needs to be to the path where the files are located on the computer:

Init by deleting all variables and functions
rm(list=ls())

Set the working directory
setwd(".")

Use the CTSM-R package, note that first the package must be installed,
see the Installation section in the CTSM-R Userguide
library(ctsmr)

List with global parameters
prm <- list()
Number of threads used by CTSM-R for the estimation computations
prm$threads <- 1

Then source some functions defined in files in the functions folder:

Source the scripts with functions in the "functions" folder
Just a neat way of arranging helping functions in R
files <- dir("functions", full.names=TRUE)
for(i in 1:length(files)) source(files[i])

1.2 Read the data

The data used in this example was measured in an office building which is part of the smart-
grid experimental facility SYSLAB is DTU Elektro, Risø campus laboratory for intelligent dis-

1

tributed power systems 1. The building is built in a lightweight wood construction. The time
series consist of five-minutes averaged values of:

• Ti (yTi in data) the average of all the indoor temperatures measured (one in each room in
the building). The sensors were hanging approximately in the center of each room (◦C).

• Φh (Ph in data) the total heat input for all electrical heaters in the building (kW).

• Ta (Ta in data) the ambient temperature (◦C).

• G (Ps in the data) the global radiation (W/m2).

• Ws (Ws in data) the wind speed (m/s).

The climate variables were measured with a climate station right next to the building. See
Bacher and Madsen (2010) for more details of the experiments in which the data was recorded.
The data is located in the file inputPRBS1.csv which are read into a data.frame by

Read the data into a data.frame
X <- read.csv("inputPRBS1.csv", sep=";", header=TRUE)
X$t is now hours since start of the experiment
Create a column in the POSIXct format for plotting etc.
X$timedate <- asP("2009-02-05 14:26:00)") + X$t * 3600

Plot the time series. Two helping functions (found in the functions folder) are used for
setting up the plot of the data in Figure 1.1.

1www.powerlab.dk/English/facilities/SysLab.aspx

www.powerlab.dk/English/facilities/SysLab.aspx

Plot the time series (see "functions/plotTSBeg.R" to see the function)
plotTSBeg(4)
gridSeq <- seq(asP("2009-01-01"), by="days", len=365)
Prepare plot
plot(X$timedate, X$yTi, type="n", xlab="", ylab="yTi ($ˆ{\\circ}$C)", yaxt="n")
axis(2, pretty(scalerange(X$yTi,0.2))) # y axis
abline(v=gridSeq, h=0, col="grey85", lty=3) # Grid
lines(X$timedate, X$yTi) # draw lines
##
plot(X$timedate, X$Ta, type="n", xlab="", ylab="Ta ($ˆ{\\circ}$C)", yaxt="n")
axis(2, pretty(scalerange(X$Ta,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ta)
##
plot(X$timedate, X$Ph, type="n", xlab="", ylab="Ph (kW)", yaxt="n")
axis(2, pretty(scalerange(X$Ph,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ph)
##
plot(X$timedate, X$Ps, type="n", xlab="", ylab="Ps (kw/m$ˆ2$)", yaxt="n")
axis(2, pretty(scalerange(X$Ps,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ps)
##
plotTSXAxis(X$timedate, format="%Y-%m-%d")

yT
i(

◦ C
)

12
16

20

Ta
(◦

C
)

0.
5

2.
0

3.
5

Ph
(k

W
)

1.
0

2.
5

4.
0

Ps
(k

w
/m

2)

0.
05

0.
15

0.
25

2009-02-06 2009-02-07 2009-02-08 2009-02-09 2009-02-10 2009-02-11

Figure 1.1: Plots of the data.

1.3 Two-state grey-box model of the heat dynamics of a build-
ing

The two-state grey-box model TiTe illustrated with the RC-diagram in Figure 1.2 and defined
by the system equations

dTi =
(1

RieCi
(Te − Ti) +

1
Ci

AwΦs +
1
Ci

Φh

)
dt + σidωi (1.1)

dTe =
(1

RieCe
(Ti − Te) +

1
ReaCe

(Ta − Te)
)

dt + σedωe (1.2)

(1.3)

together with the measurement equation

Ytk = Ti,tk + etk (1.4)

is specified with CTSM-R in the following. First, a model object is generated. Then the two
state equations are added and the inputs defined

Generate a new object of class ctsm
model <- ctsm$new()
Add system equations and thereby also states
model$addSystem(dTi ˜ (1/(Ci*Rie)*(Te-Ti) + Aw/Ci*Ps + 1/Ci*Ph)*dt + exp(p11)*dw1)
model$addSystem(dTe ˜ (1/(Ce*Rie)*(Ti-Te) + 1/(Ce*Rea)*(Ta-Te))*dt + exp(p22)*dw2)
Set the names of the inputs
model$addInput(Ta, Ps, Ph)

Note the following for each equation

• the deterministic part of the SDE is multiplied with dt,

• the stochastic part is multiplied with system noise process dw1,

• the variance of the system noise is exp(p11), where exp() is the exponential function
and p11 is the parameter which is estimated. Since the variance is strictly positive, but
can be very close to zero, it is advised to take the exponential function, in order to get a
better numerical resolution in the optimization.

The observation equation is added

Ci

Ti

Interior

Φh

Heater

AwΦs

Solar

Ce

Rie Rea

Te

Envelope

+− Ta

Ambient

Figure 1.2: RC-network equivalent.

Set the observation equation: Ti is the state, yTi is the measured output
model$addObs(yTi ˜ Ti)
Set the variance of the measurement error
model$setVariance(yTi ˜ exp(e11))

Set the intial values of the states and parameters together with bounds for the optimization

Set the initial value (for the optimization) of the states at the init time point
model$setParameter(Ti = c(init=15 ,lb=0 ,ub=25))
model$setParameter(Te = c(init=5 ,lb=-20 ,ub=25))
Set the initial value of the parameters for the optimization
model$setParameter(Ci = c(init=1 ,lb=1E-5 ,ub=20))
model$setParameter(Ce = c(init=2 ,lb=1E-5 ,ub=20))
model$setParameter(Rie = c(init=10 ,lb=1E-5 ,ub=50))
model$setParameter(Rea = c(init=10 ,lb=1E-5 ,ub=50))
model$setParameter(Aw = c(init=20 ,lb=0.1 ,ub=200))
model$setParameter(p11 = c(init=1 ,lb=-50 ,ub=10))
model$setParameter(p22 = c(init=1 ,lb=-50 ,ub=10))
model$setParameter(e11 = c(init=-1 ,lb=-50 ,ub=10))

Finally, run the parameter estimation

Run the parameter optimization
fit <- model$estimate(data = X, threads = prm$threads)

and keep the results in fit.

1.3.1 Model validation

Evaluate the result of the parameter estimation for the two-state model.
First an extended summary of the fit is printed with

See the summary of the estimation
print(summary(fit, extended=TRUE))

Coefficients:
Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar
Ti0 2.1166e+01 1.7790e-02 1.1898e+03 0.0000e+00 -2.2492e-04 0.0036
Te0 -1.9846e+01 9.4234e-01 -2.1060e+01 0.0000e+00 3.3226e-05 1.6778
Aw 2.3803e+01 3.0122e+00 7.9023e+00 4.8850e-15 1.9181e-06 0.0000
Ce 1.4403e+00 5.8356e-01 2.4681e+00 1.3682e-02 -7.6526e-07 0.0000
Ci 5.7188e+00 2.3219e-01 2.4630e+01 0.0000e+00 -8.3331e-06 0.0001
e11 -2.7224e+01 3.8705e+02 -7.0336e-02 9.4393e-01 1.7798e-06 0.0002
p11 -1.7532e+01 8.3428e+00 -2.1014e+00 3.5753e-02 6.0011e-05 0.0001
p22 2.9155e+00 1.4409e-01 2.0235e+01 0.0000e+00 -4.9843e-05 0.0001
Rea 1.1888e+00 6.6454e-01 1.7889e+00 7.3811e-02 2.2407e-07 0.0000
Rie 2.4269e+00 3.5580e-01 6.8210e+00 1.2666e-11 1.5007e-05 0.0000
##
Correlation of coefficients:
Ti0 Te0 Aw Ce Ci e11 p11 p22 Rea
Te0 -0.02
Aw -0.06 0.00
Ce 0.20 -0.07 0.00
Ci -0.03 -0.01 0.29 0.05
e11 0.02 0.01 0.03 0.05 -0.01
p11 -0.03 -0.06 -0.03 -0.06 -0.02 -1.00
p22 0.71 -0.17 -0.05 0.33 0.03 0.00 -0.02
Rea -0.32 0.11 0.04 -0.94 0.03 -0.06 0.07 -0.50
Rie 0.70 -0.16 -0.13 0.35 -0.25 0.00 0.00 0.95 -0.51

The following four important points are checked (see the section: Model Validation in the
CTSM-RUser Guide)

• That the p-value of the t-tests (i.e. Pr(>|t|)) is below 0.05 for all parameters

• That the derivative of the objective function with respect to each parameter (i.e. dF/dPar)
is close to zero

• That the derivative of the penalty function with respect to each parameter (i.e. dPen/dPar)
is not significant compared to dF/dPar). Here it is noticed that the value for Te0, the
initial value of the state Te, is much higher than dF/dPar. This indicates that the opti-
mization ended at one of the bounds for Te0 and it is seen that this is the lower bound,
which was set to −20 ◦C. Clearly this is not a realistic initial value of the state Te repre-
senting the temperature of the envelope (the ambient temperature is around 1 ◦C). Hence,
this indicate that the parameter estimates are not optimal for the model.

• That Correlation Matrix do not have any off-diagonal values close to -1 or 1.

The one-step ahead predictions and residuals are then calculated

Calculate the one-step predictions of the state (i.e. the residuals)
tmp <- predict(fit)[[1]]
Calculate the residuals and put them with the data in a data.frame X
X$residuals <- X$yTi - tmp$output$pred$yTi
X$yTiHat <- tmp$output$pred$yTi

and the auto-correlation function, the periodogram and the cumulated periodogram are plot-
ted.

Plot the auto-correlation function and cumulated periodogram in a new window
par(mfrow=c(1,3))
The blue lines indicates the 95 confidence interval, meaning that if it is
white noise, then approximately 1 out of 20 lag correlations will be slightly outside
acf(X$residuals, lag.max=6*12, main="Residuals ACF")
The periodogram is the estimated energy spectrum in the signal
spec.pgram(X$residuals, main="Raw periodogram")
The cumulated periodogram
cpgram(X$residuals, main="Cumulated periodogram")

0 10 30 50 70

-0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Residuals ACF

0.0 0.1 0.2 0.3 0.4 0.5

1e
-0

6
1e

-0
5

1e
-0

4
1e

-0
3

frequency

sp
ec

tr
um

Raw periodogram

bandwidth = 0.000167

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

Cumulated periodogram

Clearly, the residuals are not white noise and it is concluded that the model lacks in the de-
scribtion of the heat dynamics of the building. Finally, time series plots of the residuals and
the inputs are plotted

Plot the time series (see "functions/plotTSBeg.R" to see the plot setup function)
plotTSBeg(5)
gridSeq <- seq(asP("2009-01-01"), by="days", len=365)
##
plot(X$timedate, X$residuals, xlab="yTi ($ˆ{\\circ}$C)", ylab="", type="n")
abline(v=gridSeq, h=0, col="grey92")
lines(X$timedate, X$residuals)
##
plot(X$timedate, X$yTi, ylim=range(X[,c("yTi","yTiHat")]), type="n", xlab="", ylab="yTi, yTiHat($ˆ{\\circ}$C)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$yTi)
lines(X$timedate, X$yTiHat, col=2)
legend("bottomright", c("Measured","Predicted"), lty=1, col=1:2, bg="grey95")
##
plot(X$timedate, X$Ph, type="n", xlab="", ylab="Ph (kW)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ph)
##
plot(X$timedate, X$Ps, type="n", xlab="", ylab="Ps (kw/m$ˆ2$)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ps)
##
plot(X$timedate, X$Ta, type="n", xlab="", ylab="Ta ($ˆ{\\circ}$C)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ta)
##
plotTSXAxis(X$timedate, format="%Y-%m-%d")

-0
.2

-0
.1

0.
0

0.
1

yTi (◦C)

10
14

18
22

yT
i,

yT
iH

at
(◦

C
)

Measured
Predicted

0
1

2
3

4
5

Ph
(k

W
)

0.
00

0.
10

0.
20

0.
30

Ps
(k

w
/m

2)

0
1

2
3

4

Ta
(◦

C
)

2009-02-06 2009-02-07 2009-02-08 2009-02-09 2009-02-10 2009-02-11

Considering the time series plot of the residuals, it becomes apparent that the dynamics of
the system is poorly modeled right after level shifts in the PRBS heat input signal, i.e. every
time the heaters are turned on and off. In the two-state model TiTe the heat from the heaters is
flowing directly into indoor air and the thermal inertia of the heaters is not taken into account.
This leads to the idea of including a part in the model which represent the heaters, as carried
out in the three-state model described in the following section.

1.4 Wrapping the model and validation into functions

Now, in order to organize the code to achieve a more efficient work flow, the two-state model
is implemented in a function TiTe(Dat), which is defined in the file functions/TiTe.R.
Open the file to see how the function is defined. In the function everything needed are specified
and the model is fitted to the data given as the argument Dat. The function is executed with

Fit the TiTe model, it is just defined in "function/TiTe.R"
fitTiTe <- TiTe(X)

where the list returned by the function includes the model, the fit, and the data.
Furthermore, the code for analyzing and validating the fit is implemented in a function analyzeFit(fit)
(see the file "functions/analyzeFit.R"). The list returned by the model function is given
as an argument

Analyze a shorter period of the fit
analyzeFit(fitTiTe, tPer=c("2009-02-07","2009-02-08"), plotACF=FALSE, newdev=FALSE)

R
es

id
ua

ls
(◦

C
)

-0
.1

0
0.

00
0.

10

yT
i,

yT
iH

at
(◦

C
)

17
19

21

Measured
Predicted

Ph
(k

W
)

1.
0

2.
0

3.
0

4.
0

Ps
(k

w
/m

2)

0.
01

0.
04

0.
07

Ta
(◦

C
)

1.
6

2.
0

2.
4

2009-02-07 2009-02-07 2009-02-07 2009-02-07 2009-02-07

and here also the argument tPer is set in order to only analyze a given period of one day.
From the plots of the residuals it is easily seen that when the heaters are switched on and off
some fast dynamics are not described well by the model.

Ci

Ti

Interior

Φh

Ch

Rih

Th

Heater

AwΦs

Solar

Ce

Rie Rea

Te

Envelope

+− Ta

Ambient

Figure 1.3: RC-network network of the three-state model TiTeTh.

1.5 Three-state model

In this section a three-state model is fitted to the data and the results are analyzed. The model
is an extension of the two-state, where a heat capacitor and a thermal resistance are added to
represent the heaters in the building. A temperature state Te representing the temperature of
the heaters is included and the model is

dTi =
(1

RiaCi
(Te − Ti) +

1
RihCi

(Th − Ti) +
1
Ci

AwΦs

)
dt + σidωi (1.5)

dTe =
(1

RieCe
(Ti − Te) +

1
ReaCe

(Ta − Te)
)

dt + σedωe (1.6)

dTh =
(1

RihCh
(Ti − Th) +

1
Ch

Φh

)
dt + σedωh (1.7)

and the measurement equation is

Ytk = Ti,tk + etk (1.8)

The RC-diagram in Figure 1.3 is illustrating the model and it is denoted TiTeTh.
Like the two-state model as described in Section 1.4, the three-state model is wrapped in a
function

Fit the TiThTe model, see "functions/TiThTe.R"
fitTiThTe <- TiThTe(X)

where the list returned by the function includes the model, the fit, and the data.
Now, the estimation results of can easily be analyzed, as for the two-state model in Section 1.4
with the same function. The summary is printed

Analyze the fit, just the summary
analyzeFit(fitTiThTe, plotACF=FALSE, plotSeries=FALSE, newdev=FALSE)

Coefficients:
Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar
Ti0 2.1159e+01 6.7258e-03 3.1459e+03 0.0000e+00 2.4059e-03 0.0036
Th0 -1.3228e+01 2.8195e+01 -4.6915e-01 6.3902e-01 -2.1468e-07 0.0063
Te0 1.8262e+01 2.0703e-01 8.8208e+01 0.0000e+00 -1.0496e-04 0.0010
Aw 5.6346e+00 2.7281e-01 2.0654e+01 0.0000e+00 -7.5303e-06 0.0000
Ce 2.9169e+00 1.5608e-01 1.8689e+01 0.0000e+00 -1.3867e-07 0.0000
Ch 1.0867e-03 1.5159e-03 7.1691e-01 4.7353e-01 -9.2669e-05 0.0000

Ci 1.0723e+00 1.1726e-02 9.1449e+01 0.0000e+00 -1.1403e-04 0.0000
e11 -1.2891e+01 9.4115e-01 -1.3697e+01 0.0000e+00 -1.6298e-05 0.0000
p11 -4.0795e+00 1.6233e-01 -2.5130e+01 0.0000e+00 -4.1232e-05 0.0000
p22 -7.0524e+00 1.3280e+02 -5.3104e-02 9.5766e-01 3.8809e-08 0.0000
p33 -1.3170e+00 5.0022e-02 -2.6328e+01 0.0000e+00 2.1479e-06 0.0000
Rea 4.5389e+00 1.1687e-01 3.8838e+01 0.0000e+00 4.8757e-05 0.0000
Rie 8.6312e-01 2.3499e-02 3.6730e+01 0.0000e+00 -2.8052e-05 0.0000
Rih 1.1903e+02 1.6602e+02 7.1698e-01 4.7348e-01 -9.2613e-05 0.0000
##
Correlation of coefficients:
Ti0 Th0 Te0 Aw Ce Ch Ci e11 p11 p22 p33 Rea
Th0 -0.01
Te0 0.19 0.19
Aw -0.04 0.02 -0.11
Ce -0.02 0.01 -0.13 0.06
Ch 0.00 0.76 0.61 0.04 0.03
Ci -0.01 -0.06 -0.38 0.26 0.30 -0.02
e11 -0.06 0.00 0.17 -0.12 -0.06 0.08 -0.20
p11 0.06 -0.01 -0.19 0.16 0.09 -0.09 0.24 -0.96
p22 0.02 0.53 -0.17 -0.04 -0.01 0.14 -0.07 0.03 -0.02
p33 -0.04 0.03 -0.11 0.02 0.05 0.12 0.28 0.34 -0.40 -0.03
Rea 0.08 -0.05 0.02 -0.18 -0.11 -0.11 -0.16 0.01 -0.02 0.09 -0.13
Rie -0.02 0.04 -0.39 0.21 0.27 0.09 0.66 -0.14 0.18 -0.04 0.45 -0.24
Rih 0.00 -0.76 -0.61 -0.04 -0.03 -1.00 0.01 -0.07 0.09 -0.14 -0.12 0.11
Rie
Th0
Te0
Aw
Ce
Ch
Ci
e11
p11
p22
p33
Rea
Rie
Rih -0.10
##
[1] "Loglikelihood 5516.38449529415"

As for the two-state model fit the following four important points are checked (see the section:
Model Validation in the CTSM-RUser Guide)

• That the p-value of the t-tests (i.e. Pr(>|t|)) is below 0.05 for all parameters, except for
the estimate of Th0 and p22, but this is found to be ok, since they can be considered as
nuisance parameters (i.e. helping parameters not considered in conclusions).

• That the derivative of the objective function with respect to each parameter (i.e. dF/dPar)
is close to zero

• That the derivative of the penalty function with respect to each parameter (i.e. dPen/dPar)
is not significant compared to dF/dPar) .

• That Correlation Matrix do not have any off-diagonal values close to -1 or 1, except be-
tween p22 and Ch, which is found to be fine, since are not very important parameters.

The auto-correlation and cumulated periodogram is plotted

Analyze the fit, just the ACF and cpgram
analyzeFit(fitTiThTe, plotSeries=FALSE, newdev=FALSE)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of residuals

fitTiThTe

0.0 0.1 0.2 0.3 0.4 0.5

1e
-0

7
1e

-0
6

1e
-0

5
1e

-0
4

1e
-0

3

frequency

sp
ec

tr
um

Raw periodogram

bandwidth = 0.000167

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

Cumulated periodogram

and clearly, the one-step ahead prediction residuals are much alike white noise, especially
compared to the residuals for the two-state model.
Finally, the plots of the time series

Analyze the fit, just the time series plot
analyzeFit(fitTiThTe, plotACF=FALSE, newdev=FALSE)

R
es

id
ua

ls
(◦

C
)

-0
.0

2
0.

02
0.

06

yT
i,

yT
iH

at
(◦

C
)

12
16

20

Measured
Predicted

Ph
(k

W
)

1.
0

2.
5

4.
0

Ps
(k

w
/m

2)

0.
05

0.
15

0.
25

Ta
(◦

C
)

0.
5

1.
5

2.
5

3.
5

2009-02-06 2009-02-07 2009-02-08 2009-02-09 2009-02-10 2009-02-11

confirms that the residuals are much closer to white noise. Studying the residuals a bit closer
reveals that the 8’th and 9’th, have some shorter periods with direct solar radiation, and that
the level of the residuals in these periods is increased. Therefore further expansion of the
model could be focused on improving the part of the model, where the solar radiation enters
the building.

1.6 Estimated total HLC-value of the building

The estimated total HLC-value (heat loss coefficient, also called heat transfer coefficient (HTC)
or UA-value) of the building is for the three state model simply calculated by

ĤLC =
1

R̂ie + R̂ea
(1.9)

However the estimate of its standard deviance is a bit harder to calculate. It is a non-linear
function of two normal distributed values, so two reasonable approaches can be applied: a
linear approximation and a simulation approach. First the HLC-value is calculated and then
the covariance of the two R estimates are taken

The estimated HLC-value
i <- which(names(fitTiThTe$xm)%in%c("Rea","Rie"))
HLC <- 1/sum(fitTiThTe$xm[i])
HLC*1000 ## W/C

[1] 185.1151

The covariance for the two estimated R values
cov <- diag(fitTiThTe$sd[i]) %*% fitTiThTe$corr[i,i] %*% diag(fitTiThTe$sd[i])

For the linear approximation the Jacobian is calculated and used to calculate the variance of
the estimated HLC-value

The Jacobian, the derived of the HLC-value with respect to each estimate in fitTiThTe$xm[i]
J <- t(sapply(1:length(i), function(ii,x){ -1/sum(x)ˆ2 }, x=fitTiThTe$xm[i]))
The estimated variance of U
varHLC <- J %*% cov %*% t(J)
and standard deviance
sdHLC <- sqrt(varHLC)
Return the confidence interval
c(HLC-1.96*sdHLC, HLC+1.96*sdHLC)*1000

[1] 177.4843 192.7459

For the simulation approach a set of multivariate normal values based on the estimates of the
R values are generated. The HLC-value is then calculated for the generated values and the
2.5% and 97.5% quantiles are estimated as the confidence interval

Needed for multivariate normal distribution simulation
require(MASS)
Generate multivariate normal random values
Rsim <- mvrnorm(n=1000000, mu=fitTiThTe$xm[i], Sigma=cov)
For each realization calculate the HLC-value
HLCsim <- 1/apply(Rsim, 1, sum)
Estimate the 2.5% and 97.5% quantiles of the simulated values as a confidence interval
quantile(HLCsim, probs=c(0.025,0.975))*1000

2.5% 97.5%
177.7865 193.0803

1.7 Likelihood-ratio test

Likelihood-ratio tests are very useful for determining whether a larger model is to be preferred
over smaller model (i.e. the smaller model is a submodel of the larger model), see Madsen and
Thyregod (2010). Here a likelihood ratio test comparing the likelihood of the two-state model
to the likelihood of the three-state model.

Take the results of both models
small <- fitTiTe
large <- fitTiThTe
Calculate the logLikelihood for both models from their fit
logLikSmallModel <- small$loglik
logLikLargeModel <- large$loglik
Calculate lambda
chisqStat <- -2 * (logLikSmallModel - logLikLargeModel)
It this gives a p-value smaller than confidence limit, i.e. 5\%, then the
larger model is significant better than the smaller model
prmDiff <- large$model$NPARAM - small$model$NPARAM
The p-value of the test
1 - pchisq(chisqStat, prmDiff)

[1] 0

The p-value is very low and thus the three-state model is preferred over the two-state model.

Bibliography

P. Bacher and H. Madsen. Experiments and data for building energy performance analysis :
Financed by the danish electricity saving trust. Technical report, DTU Informatics, Building
321, Kgs. Lyngby, 2010.

H. Madsen and P. Thyregod. Introduction to General and Generalized Linear Models. CRC Press,
2010.

16

Appendix A

The combined R code

The combined code is also available in the file building2.R in building2.zip.
Remember to change the working directory if necessary. For the getting the plots right set the
argument newdev=TRUE in calls to analyzeFit().

Init by deleting all variables and functions
rm(list=ls())

Set the working directory
setwd(".")

Use the CTSM-R package, note that first the package must be installed,
see the Installation section in the CTSM-R Userguide
library(ctsmr)

List with global parameters
prm <- list()
Number of threads used by CTSM-R for the estimation computations
prm$threads <- 1
Source the scripts with functions in the "functions" folder
Just a neat way of arranging helping functions in R
files <- dir("functions", full.names=TRUE)
for(i in 1:length(files)) source(files[i])
Read the data into a data.frame
X <- read.csv("inputPRBS1.csv", sep=";", header=TRUE)
X$t is now hours since start of the experiment
Create a column in the POSIXct format for plotting etc.
X$timedate <- asP("2009-02-05 14:26:00)") + X$t * 3600
Plot the time series (see "functions/plotTSBeg.R" to see the function)
plotTSBeg(4)
gridSeq <- seq(asP("2009-01-01"), by="days", len=365)
Prepare plot
plot(X$timedate, X$yTi, type="n", xlab="", ylab="yTi ($ˆ{\\circ}$C)", yaxt="n")
axis(2, pretty(scalerange(X$yTi,0.2))) # y axis
abline(v=gridSeq, h=0, col="grey85", lty=3) # Grid
lines(X$timedate, X$yTi) # draw lines
##
plot(X$timedate, X$Ta, type="n", xlab="", ylab="Ta ($ˆ{\\circ}$C)", yaxt="n")
axis(2, pretty(scalerange(X$Ta,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ta)
##
plot(X$timedate, X$Ph, type="n", xlab="", ylab="Ph (kW)", yaxt="n")

17

axis(2, pretty(scalerange(X$Ph,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ph)
##
plot(X$timedate, X$Ps, type="n", xlab="", ylab="Ps (kw/m$ˆ2$)", yaxt="n")
axis(2, pretty(scalerange(X$Ps,0.2)))
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ps)
##
plotTSXAxis(X$timedate, format="%Y-%m-%d")
Generate a new object of class ctsm
model <- ctsm$new()
Add system equations and thereby also states
model$addSystem(dTi ˜ (1/(Ci*Rie)*(Te-Ti) + Aw/Ci*Ps + 1/Ci*Ph)*dt + exp(p11)*dw1)
model$addSystem(dTe ˜ (1/(Ce*Rie)*(Ti-Te) + 1/(Ce*Rea)*(Ta-Te))*dt + exp(p22)*dw2)
Set the names of the inputs
model$addInput(Ta, Ps, Ph)
Set the observation equation: Ti is the state, yTi is the measured output
model$addObs(yTi ˜ Ti)
Set the variance of the measurement error
model$setVariance(yTi ˜ exp(e11))
Set the initial value (for the optimization) of the states at the init time point
model$setParameter(Ti = c(init=15 ,lb=0 ,ub=25))
model$setParameter(Te = c(init=5 ,lb=-20 ,ub=25))
Set the initial value of the parameters for the optimization
model$setParameter(Ci = c(init=1 ,lb=1E-5 ,ub=20))
model$setParameter(Ce = c(init=2 ,lb=1E-5 ,ub=20))
model$setParameter(Rie = c(init=10 ,lb=1E-5 ,ub=50))
model$setParameter(Rea = c(init=10 ,lb=1E-5 ,ub=50))
model$setParameter(Aw = c(init=20 ,lb=0.1 ,ub=200))
model$setParameter(p11 = c(init=1 ,lb=-50 ,ub=10))
model$setParameter(p22 = c(init=1 ,lb=-50 ,ub=10))
model$setParameter(e11 = c(init=-1 ,lb=-50 ,ub=10))
Run the parameter optimization
fit <- model$estimate(data = X, threads = prm$threads)
See the summary of the estimation
print(summary(fit, extended=TRUE))
Calculate the one-step predictions of the state (i.e. the residuals)
tmp <- predict(fit)[[1]]
Calculate the residuals and put them with the data in a data.frame X
X$residuals <- X$yTi - tmp$output$pred$yTi
X$yTiHat <- tmp$output$pred$yTi
Plot the auto-correlation function and cumulated periodogram in a new window
par(mfrow=c(1,3))
The blue lines indicates the 95 confidence interval, meaning that if it is
white noise, then approximately 1 out of 20 lag correlations will be slightly outside
acf(X$residuals, lag.max=6*12, main="Residuals ACF")
The periodogram is the estimated energy spectrum in the signal
spec.pgram(X$residuals, main="Raw periodogram")
The cumulated periodogram
cpgram(X$residuals, main="Cumulated periodogram")
Plot the time series (see "functions/plotTSBeg.R" to see the plot setup function)
plotTSBeg(5)
gridSeq <- seq(asP("2009-01-01"), by="days", len=365)
##
plot(X$timedate, X$residuals, xlab="yTi ($ˆ{\\circ}$C)", ylab="", type="n")
abline(v=gridSeq, h=0, col="grey92")
lines(X$timedate, X$residuals)
##

plot(X$timedate, X$yTi, ylim=range(X[,c("yTi","yTiHat")]), type="n", xlab="", ylab="yTi, yTiHat($ˆ{\\circ}$C)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$yTi)
lines(X$timedate, X$yTiHat, col=2)
legend("bottomright", c("Measured","Predicted"), lty=1, col=1:2, bg="grey95")
##
plot(X$timedate, X$Ph, type="n", xlab="", ylab="Ph (kW)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ph)
##
plot(X$timedate, X$Ps, type="n", xlab="", ylab="Ps (kw/m$ˆ2$)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ps)
##
plot(X$timedate, X$Ta, type="n", xlab="", ylab="Ta ($ˆ{\\circ}$C)")
abline(v=gridSeq, h=0, col="grey85", lty=3)
lines(X$timedate, X$Ta)
##
plotTSXAxis(X$timedate, format="%Y-%m-%d")
Fit the TiTe model, it is just defined in "function/TiTe.R"
fitTiTe <- TiTe(X)
Analyze a shorter period of the fit
analyzeFit(fitTiTe, tPer=c("2009-02-07","2009-02-08"), plotACF=FALSE, newdev=FALSE)
Fit the TiThTe model, see "functions/TiThTe.R"
fitTiThTe <- TiThTe(X)
Analyze the fit, just the summary
analyzeFit(fitTiThTe, plotACF=FALSE, plotSeries=FALSE, newdev=FALSE)
Analyze the fit, just the ACF and cpgram
analyzeFit(fitTiThTe, plotSeries=FALSE, newdev=FALSE)
Analyze the fit, just the time series plot
analyzeFit(fitTiThTe, plotACF=FALSE, newdev=FALSE)
The estimated HLC-value
i <- which(names(fitTiThTe$xm)%in%c("Rea","Rie"))
HLC <- 1/sum(fitTiThTe$xm[i])
HLC*1000 ## W/C
The covariance for the two estimated R values
cov <- diag(fitTiThTe$sd[i]) %*% fitTiThTe$corr[i,i] %*% diag(fitTiThTe$sd[i])
The Jacobian, the derived of the HLC-value with respect to each estimate in fitTiThTe$xm[i]
J <- t(sapply(1:length(i), function(ii,x){ -1/sum(x)ˆ2 }, x=fitTiThTe$xm[i]))
The estimated variance of U
varHLC <- J %*% cov %*% t(J)
and standard deviance
sdHLC <- sqrt(varHLC)
Return the confidence interval
c(HLC-1.96*sdHLC, HLC+1.96*sdHLC)*1000
Needed for multivariate normal distribution simulation
require(MASS)
Generate multivariate normal random values
Rsim <- mvrnorm(n=1000000, mu=fitTiThTe$xm[i], Sigma=cov)
For each realization calculate the HLC-value
HLCsim <- 1/apply(Rsim, 1, sum)
Estimate the 2.5% and 97.5% quantiles of the simulated values as a confidence interval
quantile(HLCsim, probs=c(0.025,0.975))*1000
Take the results of both models
small <- fitTiTe
large <- fitTiThTe
Calculate the logLikelihood for both models from their fit
logLikSmallModel <- small$loglik
logLikLargeModel <- large$loglik

Calculate lambda
chisqStat <- -2 * (logLikSmallModel - logLikLargeModel)
It this gives a p-value smaller than confidence limit, i.e. 5\%, then the
larger model is significant better than the smaller model
prmDiff <- large$model$NPARAM - small$model$NPARAM
The p-value of the test
1 - pchisq(chisqStat, prmDiff)

	Introduction
	Initiate
	Read the data
	Two-state grey-box model of the heat dynamics of a building
	Model validation

	Wrapping the model and validation into functions
	Three-state model
	Estimated total HLC-value of the building
	Likelihood-ratio test

	The combined R code

