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Chapter 1

Introduction

This is the user guide for the R package CTSM-R containing an implementa-
tion of the modeling software Continuous Time Stochastic Modelling (CTSM),
which has, until now, been available only with a GUI. CTSM-R provides script
based modeling through R and thereby enables a much more efficient work
flow. The present user guide contains the information needed to use CTSM-R.
The mathematics behind CTSM are described in [2]. Examples of using CTSM-
R for different modeling applications can be found in separate documents,
which can be downloaded at the website1. The examples features modeling
of the heat dynamics of buildings and are accompanied with R scripts and
provide a quick way of getting started. They are listed with short descriptions
in Section 3.12. For information and download of R, see the website2)

This user guide contains: Section 2 with the instructions for installation of the
package. Section 3 with a description of the basic usage. Finally, in Section 4
tips and tricks for modeling with R and CTSM-R are given.

1.1 Getting started

In the following a brief mathematical description of the features in CTSM-R
is given. A complete description of the mathematics behind the algorithms of
the program can be found in the Mathematics Guide [2].

1.2 Features of CTSM-R

CTSM-R provides features for performing maximum likelihood (ML) and max-
imum a posteriori (MAP) estimation of unknown parameters of continuous-
discrete stochastic state space models. Continuous-discrete stochastic state
space models are models that consist of a set of stochastic differential equa-
tions describing the dynamics of a system in continuous time and a set of al-
gebraic equations describing how measurements are obtained at discrete time
instants. Several independent data sets can be used for the estimation, and the
program also provides features for dealing with varying sample times, occa-

1www.ctsm.info
2www.r-project.org
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4 CHAPTER 1. INTRODUCTION

sional outliers and missing observations. In addition various statistical tests
and residual analysis can be carried out with the program.

Model structures

Within CTSM-R the class of continuous-discrete stochastic state space models
is divided into three distinct classes. The class of the model has influence on
several aspects of the applied computations, see [2] for details. In CTSM-R the
class is automatically detected from the specification of the model (opposed
to the CTSM GUI version, where the model is specified differently depending
on the class).

The class of nonlinear (NL) models

The class of NL models is the class of models described by the equations:

dxt = f (xt, ut, t, θ)dt + σ(ut, t, θ)dωt (1.1)
yk = h(xk, uk, tk, θ) + ek (1.2)

where t ∈ R is time, xt ∈ Rn is a vector of state variables, ut ∈ Rm is a vector
of input variables, yk ∈ Rl is a vector of output variables, θ ∈ Rp is a vector
of parameters, f (·) ∈ Rn, σ(·) ∈ Rn×n and h(·) ∈ Rl are nonlinear functions,
{ωt} is an n-dimensional standard Wiener process and {ek} is an l-dimensional
white noise process with ek ∈ N (0, S(uk, tk, θ)).

The class of linear time-varying (LTV) models

The class of LTV models is the class of models described by the equations:

dxt = (A(xt, ut, t, θ)xt + B(xt, ut, t, θ)ut) dt + σ(ut, t, θ)dωt (1.3)
yk = C(xk, uk, tk, θ)xk + D(xk, uk, tk, θ)uk + ek (1.4)

where t ∈ R is time, xt ∈ Rn is a state vector, ut ∈ Rm is an input vector,
yk ∈ Rl is an output vector, θ ∈ Rp is a parameter vector, A(·) ∈ Rn×n, B(·) ∈ Rn×m,
σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are nonlinear functions, {ωt} is
an n-dimensional standard Wiener process and {ek} is an l-dimensional white
noise process with ek ∈ N (0, S(uk, tk, θ)).

The class of linear time invariant (LTI) models

The class of LTI models is the class of models described by the equations:

dxt = (A(θ)xt + B(θ)ut) dt + σ(θ)dωt (1.5)
yk = C(θ)xk + D(θ)uk + ek (1.6)

where t ∈ R is time, xt ∈ Rn is a state vector, ut ∈ Rm is an input vector,
yk ∈ Rl is an output vector, θ ∈ Rp is a parameter vector, A(·) ∈ Rn×n, B(·) ∈ Rn×m,
σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are nonlinear functions, {ωt} is
an n-dimensional standard Wiener process and {ek} is an l-dimensional white
noise process with ek ∈ N (0, S(θ)).
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Parameter estimation methods

CTSM-R allows a number of different parameter estimation setups to be used.

Maximum likelihood estimation

Given a particular model structure, maximum likelihood (ML) estimation of the
unknown parameters can be performed by finding the parameters θ that max-
imize the likelihood function of a sequence of measurements y0, y1, . . . , yk, . . . ,
yN of the output variables. By introducing the notation:

Yk = [yk, yk−1, . . . , y1, y0] (1.7)

the likelihood function is the joint probability density:

L(θ;YN) = p(YN |θ) (1.8)

or equivalently:

L(θ;YN) =

(
N

∏
k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (1.9)

where the rule P(A ∩ B) = P(A|B)P(B) has been applied to form a product
of conditional probability densities. By introducing the notation:

ŷk|k−1 = E{yk|Yk−1, θ} (1.10)

Rk|k−1 = V{yk|Yk−1, θ} (1.11)

and:

εk = yk − ŷk|k−1 (1.12)

and by assuming that the conditional probability densities are Gaussian, the
likelihood function can be written as follows:

L(θ;YN) =

 N

∏
k=1

exp
(
− 1

2 εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ) (1.13)

where εk and Rk|k−1 can be computed by means of a Kalman filter (LTI mo-
dels) or an iterated extended Kalman filter (LTV and NL models). Further
conditioning on y0 and taking the negative logarithm gives:

− ln (L(θ;YN |y0)) =
1
2

N

∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)
+

1
2

(
N

∑
k=1

l

)
ln(2π)

(1.14)

and ML estimates of the parameters (and the initial states if these are un-
known) can now be determined by solving the nonlinear optimisation prob-
lem:

θ̂ = arg min
θ∈Θ
{− ln (L(θ;YN |y0))} (1.15)
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Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN) =
p(YN |θ)p(θ)

p(YN)
∝ p(YN |θ)p(θ) (1.16)

and finding the parameters that maximize this function, i.e. by performing
maximum a posteriori (MAP) estimation. By introducing the notation:

µθ = E{θ} (1.17)
Σθ = V{θ} (1.18)

and:

εθ = θ− µθ (1.19)

and by assuming that the prior probability density of the parameters is Gaus-
sian, the posterior probability density function can be written as follows:

p(θ|YN) ∝

 N

∏
k=1

exp
(
− 1

2 εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ)

×
exp

(
− 1

2 εT
θ Σ−1

θ εθ

)
√

det(Σθ)
(√

2π
)p

(1.20)

Further conditioning on y0 and taking the negative logarithm gives:

− ln (p(θ|YN , y0)) ∝
1
2

N

∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)
+

1
2

((
N

∑
k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2

εT
θ Σ−1

θ εθ

(1.21)

and MAP estimates of the parameters (and the initial states if these are un-
known) can now be determined by solving the nonlinear optimisation prob-
lem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|YN , y0))} (1.22)

Using several independent data sets

Instead of a single sequence of measurements, several separate sequences, i.e.
Y1

N1
, Y2

N2
, . . . , Y i

Ni
, . . . , YS

NS
, possibly of varying length, may be available. In
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this case a similar estimation method can be applied by expanding the expres-
sion for the posterior probability density function to a more general form:

p(θ|Y) ∝
S

∏
i=1

 Ni

∏
k=1

exp
(
− 1

2 (ε
i
k)

T(Ri
k|k−1)

−1εi
k

)
√

det(Ri
k|k−1)

(√
2π
)l

 p(yi
0|θ)

×
exp

(
− 1

2 εT
θ Σ−1

θ εθ

)
√

det(Σθ)
(√

2π
)p

(1.23)

where:

Y = [Y1
N1

,Y2
N2

, . . . ,Y i
Ni

, . . . ,YS
NS
] (1.24)

and where the individual sequences of measurements are assumed to be stochas-
tically independent. Further conditioning on:

y0 = [y1
0, y2

0, . . . , yi
0, . . . , yS

0 ] (1.25)

and taking the negative logarithm gives:

− ln (p(θ|Y, y0)) ∝
1
2

S

∑
i=1

Ni

∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)

T(Ri
k|k−1)

−1εi
k

)
+

1
2

((
S

∑
i=1

Ni

∑
k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2

εT
θ Σ−1

θ εθ

(1.26)

and estimates of the parameters (and the initial states if these are unknown)
can now be determined by solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|Y, y0))} (1.27)

Data issues

Within CTSM-R features have also been implemented for dealing with vary-
ing sample times, occasional outliers and missing observations.

Statistical tests

In addition to the parameter estimates themselves, CTSM-R computes the
standard deviations of the estimates, the corresponding t-test scores and as-
sociated probabilities for testing the significance of the parameters, as well
as the correlation matrix of the estimates. Altogether these quantities allow
a number of statistical tests to be performed to investigate the quality of the
model.

Residual analysis

To facilitate residual analysis CTSM-R can be used to generate validation data
in the form of state and output predictions corresponding to a given input
data set, using either one-step-ahead prediction or pure simulation.





Chapter 2

Installation

First, download the latest version of R from www.r-project.org and install
it on the computer. Use preferably the newest version and at least a version
newer than 2.14. The installation of CTSM-R is carried out through the pack-
age system in R. To install CTSM-R in R simply run the following line:

## Install the package

install.packages("ctsmr", repo = "http://ctsm.info/repo/dev", type = "source")

Note that if this gives an error message then restart R and try again.

2.1 Dependencies

CTSM-R translates the models into Fortran code which has to be compiled at
your local machine.

• Linux users must install R development packages. Ubuntu users can in
a terminal run sudo apt-get install r-base-dev which will install
all the required packages.

• Windows users must install the appropriate version of Rtools from http:

//cran.r-project.org/bin/windows/Rtools/.

• Mac users must install either Xcode or the much smaller Command Line
Tools for Xcode (requires a free developer account at Apple). Addition-
ally you must install gfortran from http://cran.r-project.org/bin/

macosx/tools/.

9
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Chapter 3

Using CTSM-R

In the present section all features of CTSM-R are described. If you just want to
get started quickly then follow and run the code of one of the examples listed
in Section 3.12.

3.1 Create a model

In order to use the CTSM-R package it is must be loaded with

library(cstmr)

and an object of the class ”ctsm” must be generated

model <- ctsm$new()

The CTSM-R is implemented using ReferenceClasses1, which provide object
oriented programming in R. The fields and methods on the variable model can
be used for the modeling.

3.2 Rules for model equations

The following rules apply when defining model equations:

• Characters accepted by the interpreter are letters A-Z and a-z, integers
0-9, operators +, -, *, /, ˆ, parentheses ( and ) and decimal separator ..

• The interpreter is case sensitive with respect to the symbolic names of
inputs, outputs, states, algebraic equations and parameters, but not with
respect to common mathematical functions. This means that the names
’k1’ and ’K1’ are different, whereas the names ’exp()’ and ’EXP()’ are the
same. The single character ’t’ is treated as the time variable, whereas the
single character ’T’ is treated as any other single character.

• The number formats accepted by the interpreter are the following: Sci-
entific (i.e. 1.2E+1), standard (i.e. 12.0) and integer (i.e. 12).

1http://www.inside-r.org/r-doc/methods/ReferenceClasses
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• Each factor, i.e. each collection of latin letters and integers separated by
operators or parentheses, which is not a number or a common mathe-
matical function, is checked to see if it corresponds to the symbolic name
of any of the inputs, outputs, states or algebraic equations or to the time
variable. If not, the factor is regarded as a parameter.

• The common mathematical functions recognized by the interpreter are
the following: abs(), sign(), sqrt(), exp(), log(), sin(), cos(), tan(), arcsin(),
arctan(), sinh() and cosh().

3.3 Defining inputs, outputs, equations and initial values

In CTSM-R the definition of a model is carried out with methods on the model
object. The following must be defined for a model before parameter estima-
tion can be carried out:

• The inputs (as named in the data) see Section 3.4 below.

• The states with accompanying system equations.

• The outputs (as named in data) with accompanying observation equa-
tions.

• The lower and upper bounds, and initial values of the states and param-
eters which are to be estimated. The parameters and states can be fixed
by only defining their initial value.

Inputs

Defining the names of the inputs is carried out with the function

model$addInput(...)

where the inputs are simply defined as a comma separated list, for example
model$addInput(U1,U2) adds the inputs U1 and U2, which must be columns
in the data, see Section 3.4.

States and system equations

Adding a state is with its system equation to the model is carried out with the
function

model$addSystem(dX1 ~ (...) * dt + (...) * dw1)

where X1 is the name of the state, and the ... are expressions of states and
inputs. More system equations can be added with the function by simply
calling it again, for example

model$addSystem(dX2 ~ (...) * dt + (...) * dw2)

adds a second state X2 with an independent Wiener process dw2.



3.3. DEFINING INPUTS, OUTPUTS, EQUATIONS AND INITIAL VALUES13

Outputs and observation equations

Adding an observation equation is carried out with the function

model$addObs(Y1 ~ ...)

where Y1 is the name of the output (as defined in the data, see Section 3.4) and
... is an expression of the states and inputs. The variance of the observation
noise is added for the output Y with the function

model$setVariance(Y1 ~ ...)

where ... is an expression of the states and inputs. Adding one more ob-
servation equation is simply carried out by calling the functions again, for
example

model$addObs(Y2 ~ ...)

model$setVariance(Y2 ~ ...)

adds the output Y2 to the model.

Defining initial values of states and parameters

The parameter estimation is carried out by maximizing the likelihood function
with an optimization scheme. The scheme requires initial values for the states
and parameters, together with lower and upper bounds. The initial values
can be set with the function

model$setParameter(a = c(init = 10, lower = 1, upper = 100))

which sets the initial value and bounds for the parameter a. For setting the
initial value of a state the same function is used, for example

model$setParameter(X1 = c(init = 100, lower = 10, upper = 1000))

sets the intial value of X1.
In order to fix the value of a parameter to a constant value the function is
called without the bounds, for example

model$setParameter(a = c(init = 10))

and to estimate the parameter with the maximum a posteriori method, see
Chapter 1.2, the prior standard deviation is set with

model$setParameter(a = c(init = 10, lower = , upper = , sd = ))

Note that
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3.4 Defining data for estimation

The data is defined as a data.frame, see 2 for description of data frames i R.
The columns of the data.frame must be the time series of the time, input(s),
and output(s). The columns to be used must have class numeric and be named
as in the model equations. The time column must be named as "t" or "time".

Several independent data sets can be used for estimation by providing a list
of data.frames formatted as described above.

3.5 Parameter estimation

The parameter estimation is carried out with the function

fit <- model$estimate(data, constantsamplingtime = TRUE, firstorderinputinterpolation = FALSE,

threads = 1)

where

• data is the dataframe used for estimation,

• constantsamplingtime Set to TRUE if the samples are equidistant (i.e.
constant sample period) or else set to FALSE. Note, that a check is carried
and a warning given if a wrong value is set, for example if set to TRUE

but the time differences are not equal (or near equal as determined with
all.equal()).

• firstorderinputinterpolation Set to FALSE for zero order hold (con-
stant input between the sample points) or else set to TRUE for 1’st order
hold (linear interpolated inputs between the sample points).

• and threads is the number of threads to be used for parallel computa-
tions. The parameter estimation is carried out by minimizing the objec-
tive function in Equation (1.14). The trace of the optimization is printed
to the R console during the estimation.

The fit returned is a list with information on the result of the estimation. For
a complete description of all elements, see ctsm$help("estimate"). See all
the names of all elements with

names(fit)

The main elements are:

• loglik The loglikelihood of the model with the estimated parameters

• xm The estimated values of the parameters

• sd The estimated standard deviance of the parameter estimates

• model The model used for the estimation. The values of constantsampletime
and firstorderinputinterpolate are also stored with the model in the
fit.

• data The data used for the estimation.
2cran.r-project.org/manuals.html

cran.r-project.org/manuals.html
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3.6 Displaying estimation results and generating validation
data

Several functions are available for displaying the estimation results and for
generating validation data when the initial states and parameters have been
estimated (see Section 3.11 for an explanation of error messages if the compu-
tation stops prematurely).

The importance of validating the estimation results must be emphasized. It
is necessary to verify that the optimization did end at a global optimum. The
four points marked with red in the text below should be considered, when
checking the estimation results. Finally, a validation of the assumption of
white noise one-step prediction residuals, together with a physical interpreta-
tion of the parameter estimates, should be carried out as outlined in Section
3.7.

Summary of estimated parameters

The function

summary(fit, extended = TRUE)

takes the fit returned by model$estimate(). It displays a matrix of the es-
timated parameters with their estimated uncertainty, some optimization vari-
ables and the correlation matrix of the parameter estimates. The displayed
results for each parameter are:

Estimate The estimated parameter value.

Std. Error The standard deviance of the parameter estimate.

t value The value of the t-statistic

Pr(>|t|) The fraction of probability of the corresponding t-distribution
outside the limits set by the t value. Loosely speaking, the
p(>|t|) value is the probability that the particular initial state
or parameter is insignificant, i.e. equal to 0. If this value is not
low (normally it should be below 0.05) this can be an indica-
tion that the model is over-parametrized.

dF/dPar Derivative of the objective function with respect to the par-
ticular initial state or parameter. If the value is not close to
zero, the solution found may not be the true optimum, and
it should be considered to change some settings for the opti-
mization and repeating the computation.

dPen/dPar Derivative of the penalty function with respect to the particu-
lar initial state or parameter. If the value is significant com-
pared to the dF/dPar value, the particular initial state or pa-
rameter may be close to one of its limits, and it should be con-
sidered to loosen this limit
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Finally, the Correlation Matrix of the parameter estimates is printed. If the
Correlation Matrix has off-diagonal values close to 1 or -1, it is an indication
that the model is over-parametrized, and it should be considered to eliminate
some of the parameters.

Prediction, simulation and filtering

In this section it is described how predictions, simulations and filtering can be
carried with CTSM-R. First

Prediction

Prediction data, i.e. state and output predictions j steps ahead based on the
inputs and outputs in a given data set, can be generated for a fit of a model,
both with the data set used for estimation and for other data sets. The state
and output predictions generated are x̂tk |tk−j

and ŷtk |tk−j
for j ≤ 1 correspond-

ing to each time instant tk in the data set. Also generated are their standard
deviations SD(x̂tk |tk−j

) =
√

diag(Ptk |tk−j
) and SD(ŷtk |tk−j

) =
√

diag(Rtk |tk−j
).

Simulation

Pure simulation data, i.e. state and output predictions based only on the in-
puts in a given data set, can be generated for a fit of a model. The state
and output predictions generated are x̂tk |t0

and ŷtk |t0
corresponding to each

time instant tk in the data set. Also generated are their standard deviations

SD(x̂tk |t0
) =

√
diag(Ptk |t0

) and SD(ŷtk |t0
) =

√
diag(Rtk |t0

).

Filtering

Filtered data, i.e. the estimates of the states at time t based on the inputs and
outputs available at time t, can be generated for a fit of a model. The state
estimates generated are x̂tk |tk

along with its standard deviation SD(x̂tk |tk
) =√

diag(Ptk |tk
).

Smoothing

Smoothing data, i.e. the estimates of the states at time t based on the en-
tire data set, can be generated for a fit of a nonlinear model. The state esti-
mates generated are x̂tk |tN

along with their standard deviations SD(x̂tk |tN
) =√

diag(Ptk |tN
).

Generating predictions, simulations, filtered and smoothed series

Predictions, simulations, filtering and smoothing with a fit from a model can
be generated with the functions

Pred <- predict(fit, n.ahead = 1)

Sim <- simulate.ctsmr(fit)

Fil <- filter.ctsmr(fit)

Smo <- smooth.ctsmr(fit)
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respectively, where fit is the list returned by model$estimate(). For predic-
tions the n.ahead determines the number of steps ahead of the predictions.
To generate the series using a different data set than for the estimation the
following arguments must also be given to the methods

• newdata as a data.frame with the appropriate format for the model (see
Section 3.4)

• constantsamplingtime set to TRUE for equidistant sample points and
FALSE for varying sample time

• firstorderinputinterpolation set to TRUE for first order interpolation
of the inputs between the sample points (see Section 3.5).

A list is returned with values of the states and the observations, which can
accessed by

## A matrix of the predicted states and estimated standard

## devations

Pred$state$pred

Pred$state$SD

## A matrix of the predicted observations and estimated

## standard devations

Pred$output$pred

Pred$output$SD

and similarly for simulation. For filtering and smoothing only the state is
computed. Note that the returned value (above Pred) is either

• if the data used was a single data.frame, then $pred and $SD are matrices

• or if the data was a list of data.frames, then $pred and $SD are equivalent
lists of matrices

3.7 Model validation

To verify that the model and the estimated parameter values describes the
dynamics of the system, the following should be considered:

• The assumption of white noise residuals should be inferred upon us-
ing the auto-correlation function (ACF) and the cumulated periodogram
(CP), which can also reveal how well dynamics on different timescales
are modeled. In R functions for carrying out such analysis are imple-
mented, e.g. acf() and cpgram().

• Plots of the inputs, outputs, and residuals. These plots can be used to
understand which effects are not described properly by the model.

• Evaluation of the estimated physical parameters. Clearly the results
should be consistent among different models, for example estimate of
the thermal resistance of a building envelope should not change signif-
icantly among the models. Furthermore, the modeller have to judge if
the results are consistent with reality.

Systematic approaches to grey-box model selection are presented by [3] and
[1]. For examples of an implementation of this model validation, see the
scripts accompanying the examples listed in Section 3.12.
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3.8 Changing the settings for a model

Using the Settings menu, it is possible to control a number of the computa-
tional features within CTSM-R, which may be useful to obtain better results.
The settings are controlled with the elements in the list

model$options$element

where the following elements can be set.
Filter settings which holds the controls for the (iterated extended) Kalman
filter part of CTSM-R (see [2] for details).

• initialVarianceScaling For all models the Scaling factor for initial co-
variance (default: 1.0) can be set. It is used in the calculation of the co-
variance of the initial states. The larger the scaling factor, the more uncertain
the initial states.

• numberOfSubsamples For linear time varying (LTV) models, the Number
of subsamples in iterated extended Kalman filter (default: 10) is displayed
in addition to the above scaling factor. This is the number of subsam-
ples used in the subsampling approximation to the true solution of the
propagation equations in the iterated extended Kalman filter. The more
subsamples, the more accurate the approximation.

Non-linear models:

• solutionMethod which method to apply for solving the propagation
equations of the iterated extended Kalman filter: 1) Subsampling ap-
proximation, 2) numerical ODE solution with the Adams method for
non-stiff systems (default) or 3) numerical ODE solution with the BDF
method for stiff systems.

• odeeps In the lower panel the Tolerance for numerical ODE solution (de-
fault: 1.0E-12) is the tolerance used by the ODE solvers in the iterated
extended Kalman filter. The lower the tolerance, the more accurate the ODE
solution.

• nIEKF The Maximum number of iterations in iterated extended Kalman fil-
ter (default: 10) is the maximum number of iterations performed to re-
duce the effects of measurement equation nonlinearities in the iterated
extended Kalman filter. The more iterations and the lower the tolerance, the
better.

• iEKFeps the Tolerance for iterated extended Kalman filter (default: 1.0E-12)
is the corresponding tolerance. The measurement equation is iterated
until the tolerance is met or until the maximum number of iterations is
reached.

Optimization settings holds the basic controls for the optimisation part of
CTSM-R (see the Mathematics Guide for details).

• maxNumberOfEval The Maximum number of objective function evaluations
(default: 500) is simply a limit on the number of objective function eval-
uations.
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• eps the Relative error in calculation of objective function (default: 1.0E-14)
is a value used to determine a step size for the finite difference gradient
approximations within the optimisation algorithm.

• eta the Adjustment factor for initial step length in line search (default: 1.0E-
6) is a value used to adjust the initial step length in the line search.

Advanced settings (there is usually no need to adjust any of these values):

• hubersPsiLimit The Cut-off value for Huber’s psi-function (default: 3.0)
is the constant c in Huber’s ψ-function.

• padeApproximationOrder The Padé approximation order (default: 6) is
the order of the Padé approximation used to compute matrix exponen-
tials.

• svdEps The Tolerance for singular value decomposition (default: 1.0E-12) is
a value used to determine if the A matrix is singular or not.

• lambda The Lagrange multiplier in penalty function (default: 1.0E-4) is the
λ value used in the penalty function.

• smallestAbsValueForNormalizing The Minimum absolute value used for
normalizing in penalty function is a value used to ensure numerical stabil-
ity in calculation of the penalty function.

3.9 Save and load a fit

The fit returned by model$estimate() can simply be saved with

save(fit, file = "xx.rda")

and loaded again with

load(file = "xx.rda")

which recreates fit in the environment.

3.10 Additional features of CTSM-R

• Profile likelihood

• Optimization trace

3.11 Error messages

In this section the error messages, which CTSM-R gives if it encounters errors,
are listed together with explanations and hints on how to resolve the error.
Mainly errors occur when CTSM-R is analyzing the model, e.g. if an equation
is not defined correctly, or in the optimization, e.g. if the optimization did not
converge.
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Estimation

When calling model$estimate() to carry out the parameter estimation the
following error messages can be returned

• Missing initial values for a. where a is a name of a variable used
in the model. The cause for this error can be

– The initial values were not defined for parameter a

– a is an input which is defined in the equations, but not in model$addInput()

– a should not have been defined in the equations at all or given a
wrong name

3.12 Modeling examples

Several examples with accompanying R scripts are available. They are located
in the folder examples. The following examples are available:

• Building 1 Simple example of modeling the heat dynamics of a build-
ing using the heat flux through the building envelope as model output.
A linear time invariant model is used.

• Building 2 Example of modeling the heat dynamics of a building using
the indoor temperature as model output. Linear time invariant models
are used. It is furthermore demonstrated how a suitable model can be
selected using likelihood ratio tests.
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Tips and tricks

In this section tips and tricks for using R and modeling with CTSM-R is given.

4.1 Matlab/R reference

For Matlab users the Matlab/R reference guide provides a very easy way of
learning to use R, see http://www.math.umaine.edu/~hiebeler/comp/matlabR.
html

4.2 Editor for R

Several editors are available for interaction with R.

RStudio

RStudio is a well developed editor for R which has implemented many fea-
tures such as auto-completion, etc., see more on rstudio.org.

RStudio on the DTU Linux system

For running CTSM-R in R on the DTU Linux system with RStudio proceed by:

• Install the Thinlinc client from http://www.cendio.com/downloads/clients/.

• Login with Thinlinc client to ”thinlinc.gbar.dtu.dk”

• Instructions for running RStudio on the DTU Unix system:

– Download it from http://rstudio.org/download/desktop#. Take
under Zip/Tarball the Debian 6+/Ubuntu 10.04+ (64-bit) ver-
sion.

– Extract it to some "[folder]" from where you will run it.

– Open a terminal, execute "export RSTUDIO_WHICH_R=/appl/R/2.14.0/bin/R",
and press enter.

– Open a terminal, run the binary file "[folder]/bin/rstudio".

– The computers run Linux, therefore install the CTSM-R package for
Linux, see Section 2.
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• You can ftp to get your files (plots etc.) to ftp.student.dtu.dk and
login.

Emacs Speak Statistics (ESS)

Emacs users can interact with R with ESS, see ess.r-project.org.

4.3 Model debugging

Tips for model debugging and how to find out why the estimation is not suc-
cessful.

Debugging functions in R

R has several build-in facilities for debugging functions.

traceback()

After an error the tracback() can be used to find the function which caused
the error.

browser()

An easy way to debug a function, where the code can be edited and resourced,
is to use browser(). It must be set into a function, for example

hellobrowser <- function(x) {
## Print x

print(x)

## Stop excution here

browser()

## Return x

return(x)

}

will stop the execution of the function when it reaches browser(). A promt
will be presented in the R console where debugging commands can be run.

debug package

The debug package can be used to debug all functions, also build in R func-
tions, and the CTSM-R methods. Use install.packages("debug") to install
the package. This package works very well for debugging Reference classes.

ess.r-project.org
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